Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FOAL: Fine-grained Contrastive Learning for Cross-domain Aspect Sentiment Triplet Extraction (2311.10373v1)

Published 17 Nov 2023 in cs.CL

Abstract: Aspect Sentiment Triplet Extraction (ASTE) has achieved promising results while relying on sufficient annotation data in a specific domain. However, it is infeasible to annotate data for each individual domain. We propose to explore ASTE in the cross-domain setting, which transfers knowledge from a resource-rich source domain to a resource-poor target domain, thereby alleviating the reliance on labeled data in the target domain. To effectively transfer the knowledge across domains and extract the sentiment triplets accurately, we propose a method named Fine-grained cOntrAstive Learning (FOAL) to reduce the domain discrepancy and preserve the discriminability of each category. Experiments on six transfer pairs show that FOAL achieves 6% performance gains and reduces the domain discrepancy significantly compared with strong baselines. Our code will be publicly available once accepted.

Summary

We haven't generated a summary for this paper yet.