Shifting to Machine Supervision: Annotation-Efficient Semi and Self-Supervised Learning for Automatic Medical Image Segmentation and Classification (2311.10319v6)
Abstract: Advancements in clinical treatment are increasingly constrained by the limitations of supervised learning techniques, which depend heavily on large volumes of annotated data. The annotation process is not only costly but also demands substantial time from clinical specialists. Addressing this issue, we introduce the S4MI (Self-Supervision and Semi-Supervision for Medical Imaging) pipeline, a novel approach that leverages advancements in self-supervised and semi-supervised learning. These techniques engage in auxiliary tasks that do not require labeling, thus simplifying the scaling of machine supervision compared to fully-supervised methods. Our study benchmarks these techniques on three distinct medical imaging datasets to evaluate their effectiveness in classification and segmentation tasks. Notably, we observed that self supervised learning significantly surpassed the performance of supervised methods in the classification of all evaluated datasets. Remarkably, the semi-supervised approach demonstrated superior outcomes in segmentation, outperforming fully-supervised methods while using 50% fewer labels across all datasets. In line with our commitment to contributing to the scientific community, we have made the S4MI code openly accessible, allowing for broader application and further development of these methods.
- Yang, X., He, X., Liang, Y., Yang, Y., Zhang, S., Xie, P.: Transfer learning or self-supervised learning? a tale of two pretraining paradigms. arXiv preprint arXiv:2007.04234 (2020) Chen et al. [2020] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020). PMLR Caron et al. [2021] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021) Xie et al. [2022] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020). PMLR Caron et al. [2021] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021) Xie et al. [2022] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021) Xie et al. [2022] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020). PMLR Caron et al. [2021] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021) Xie et al. [2022] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021) Xie et al. [2022] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021) Xie et al. [2022] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9653–9663 (2022) Singh et al. [2022] Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Singh, P., Sizikova, E., Cirrone, J.: Cass: Cross architectural self-supervision for medical image analysis. arXiv preprint arXiv:2206.04170 (2022) Balestriero et al. [2023] Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian, Y., et al.: A cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210 (2023) Luo et al. [2022] Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Luo, X., Hu, M., Song, T., Wang, G., Zhang, S.: Semi-supervised medical image segmentation via cross teaching between cnn and transformer. In: Medical Imaging with Deep Learning (2022). https://openreview.net/forum?id=KUmlnqHrAbE Cho et al. [2021] Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. CoRR abs/2103.17070 (2021) 2103.17070 Singh and Cirrone [2022] Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Singh, P., Cirrone, J.: A Data-Efficient Deep Learning Framework for Segmentation and Classification of Histopathology Images (2022) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf Codella et al. [2018] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 168–172 (2018). IEEE Liu et al. [2021] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021) Thanh et al. [2019] Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Thanh, D.N.H., Erkan, U., Prasath, V.B.S., Kumar, V., Hien, N.N.: A skin lesion segmentation method for dermoscopic images based on adaptive thresholding with normalization of color models. In: 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), pp. 116–120 (2019). https://doi.org/10.1109/ICEEE2019.2019.00030 Selvaraju et al. [2022] Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Selvaraju, R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. arxiv 2016. arXiv preprint arXiv:1610.02391 (2022) Fu et al. [2023] Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Fu, S., Tamir, N., Sundaram, S., Chai, L., Zhang, R., Dekel, T., Isola, P.: Enhancing medical image segmentation: Optimizing cross-entropy weights and post-processing with autoencoders. arXiv preprint arXiv:2306.09344 (2023) Zhang et al. [2017] Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III, pp. 408–416. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66179-7_47 . https://doi.org/10.1007/978-3-319-66179-7_47 Bai et al. [2017] Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Bai, W., Oktay, O., Sinclair, M., Suzuki, H., Rajchl, M., Tarroni, G., Glocker, B., King, A., Matthews, P.M., Rueckert, D.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017, pp. 253–260. Springer, Cham (2017) Peng et al. [2020] Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recognition 107, 107269 (2020) Yu et al. [2019] Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3d left atrium segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 605–613 (2019). Springer Caron et al. [2018] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520 Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. CoRR abs/1807.05520 (2018) 1807.05520
- Pranav Singh (24 papers)
- Raviteja Chukkapalli (2 papers)
- Shravan Chaudhari (7 papers)
- Luoyao Chen (5 papers)
- Mei Chen (32 papers)
- Jinqian Pan (8 papers)
- Craig Smuda (1 paper)
- Jacopo Cirrone (9 papers)