Singular Trudinger--Moser inequality involving $L^{p}$ norm in bounded domain (2311.10289v2)
Abstract: In this paper, we use the method of blow-up analysis and capacity estimate to derive the singular Trudinger--Moser inequality involving $N$-Finsler--Laplacian and $L{p}$ norm, precisely, for any $p>1$, $0\leq\gamma<\gamma_{1}:= \inf\limits_{u\in W{1, N}{0}(\Omega)\backslash {0}}\frac{\int{\Omega}F{N}(\nabla u)dx}{| u|pN}$ and $0\leq\beta<N$, we have \begin{align} \sup{u\in W_{0}{1,N}(\Omega),\;\int_{\Omega}F{N}(\nabla u)dx-\gamma| u|pN\leq1}\int{\Omega}\frac{e{\lambda_{N}(1-\frac{\beta}{N})\lvert u\rvert{\frac{N}{N-1}}}}{F{o}(x){\beta}}\;\mathrm{d}x<+\infty\notag, \end{align} where $\lambda_{N}=N{\frac{N}{N-1}} \kappa_{N}{\frac{1}{N-1}}$ and $\kappa_{N}$ is the volume of a unit Wulff ball in $\mathbb{R}N$, moreover, extremal functions for the inequality are also obtained. When $F=\lvert\cdot\rvert$ and $p=N$, we can obtain the singular version of Tintarev type inequality by the obove inequality, namely, for any $0\leq\alpha<\alpha_{1}(\Omega):=\inf\limits_{u\in W{1, N}{0}(\Omega)\backslash {0}}\frac{\int{\Omega}|\nabla u|Ndx}{| u|NN}$ and $0\leq\beta<N$, it holds $$ \sup{u\in W_{0}{1,N}(\Omega),\;\int_{\Omega}\lvert\nabla u\rvert{N}\;\mathrm{d}x-\alpha|u|{N}{N}\leq1}\int{\Omega}\frac{e{\alpha_{N}(1-\frac{\beta}{N})\lvert u\rvert{\frac{N}{N-1}}}}{\lvert x\rvert{\beta}}\;\mathrm{d}x<+\infty, $$ where $\alpha_{N}:=N{\frac{N}{N-1}}\omega_{N}{\frac{1}{N-1}}$ and $ \omega_{N}$ is the volume of unit ball in $\mathbb{R}{N}$. Our results extend many well-known Trudinger--Moser type inequalities to more general setting.