Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedTruth: Byzantine-Robust and Backdoor-Resilient Federated Learning Framework (2311.10248v1)

Published 17 Nov 2023 in cs.LG, cs.AI, cs.CR, and cs.DC

Abstract: Federated Learning (FL) enables collaborative machine learning model training across multiple parties without sharing raw data. However, FL's distributed nature allows malicious clients to impact model training through Byzantine or backdoor attacks, using erroneous model updates. Existing defenses measure the deviation of each update from a 'ground-truth model update.' They often rely on a benign root dataset on the server or use trimmed mean or median for clipping, both methods having limitations. We introduce FedTruth, a robust defense against model poisoning in FL. FedTruth doesn't assume specific data distributions nor requires a benign root dataset. It estimates a global model update with dynamic aggregation weights, considering contributions from all benign clients. Empirical studies demonstrate FedTruth's efficacy in mitigating the impacts of poisoned updates from both Byzantine and backdoor attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sheldon C. Ebron Jr. (1 paper)
  2. Kan Yang (5 papers)
Citations (1)