Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Coupled-channel description of charmed heavy hadronic molecules within the meson-exchange model and its implication (2311.10067v3)

Published 16 Nov 2023 in hep-ph and hep-ex

Abstract: Motivated by the first observation of the double-charm tetraquark $T_{cc}+(3875)$ by the LHCb Collaboration, we investigate the nature of $T_{cc}+$ as an isoscalar $DD*$ hadronic molecule in a meson-exchange potential model incorporated by the coupled-channel effects and three-body unitarity. The $D0D0\pi+$ invariant mass spectrum can be well-described and the $T_{cc}+$ pole structure can be precisely extracted. Under the hypothesis that the interactions between the heavy flavor hadrons can be saturated by the light meson-exchange potentials, the near-threshold dynamics of $T_{cc}+$ can shed light on the binding of its heavy-quark spin symmetry (HQSS) partner $DD^$ ($I=0$) and on the nature of other heavy hadronic molecule candidates such as $X(3872)$ and $Z_c(3900)$ in the charmed-anticharmed systems. The latter states can be related to $T_{cc}+$ in the meson-exchange potential model with limited assumptions based on the SU(3) flavor symmetry relations. The combined analysis, on the one hand, indicates the HQSS breaking effects among those HQSS partners, and on the other hand, highlights the role played by the short and long-distance dynamics for the near threshold $D{()}D{()}$ and $D{()}\bar{D}{()}+c.c.$ systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (126)
  1. Murray Gell-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett., 8:214–215, 1964.
  2. G. Zweig. An SU(3) model for strong interaction symmetry and its breaking. Version 1. 1 1964.
  3. G. Zweig. An SU(3) model for strong interaction symmetry and its breaking. Version 2, pages 22–101. 2 1964.
  4. S. Godfrey and Nathan Isgur. Mesons in a Relativized Quark Model with Chromodynamics. Phys. Rev. D, 32:189–231, 1985.
  5. Baryons in a relativized quark model with chromodynamics. Phys. Rev. D, 34(9):2809–2835, 1986.
  6. S. K. Choi et al. Observation of a narrow charmonium-like state in exclusive B±→K±⁢π+⁢π−⁢J/ψ→superscript𝐵plus-or-minussuperscript𝐾plus-or-minussuperscript𝜋superscript𝜋𝐽𝜓B^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psiitalic_B start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT → italic_K start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_J / italic_ψ decays. Phys. Rev. Lett., 91:262001, 2003.
  7. Hadronic molecules. Rev. Mod. Phys., 90(1):015004, 2018. [Erratum: Rev.Mod.Phys. 94, 029901 (2022)].
  8. The hidden-charm pentaquark and tetraquark states. Phys. Rept., 639:1–121, 2016.
  9. Nonstandard heavy mesons and baryons: Experimental evidence. Rev. Mod. Phys., 90(1):015003, 2018.
  10. Multiquark Resonances. Phys. Rept., 668:1–97, 2017.
  11. Heavy-Quark QCD Exotica. Prog. Part. Nucl. Phys., 93:143–194, 2017.
  12. The X⁢Y⁢Z𝑋𝑌𝑍XYZitalic_X italic_Y italic_Z states: experimental and theoretical status and perspectives. Phys. Rept., 873:1–154, 2020.
  13. Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys., 107:237–320, 2019.
  14. Exotics: Heavy Pentaquarks and Tetraquarks. Prog. Part. Nucl. Phys., 97:123–198, 2017.
  15. Multiquark States. Ann. Rev. Nucl. Part. Sci., 68:17–44, 2018.
  16. An updated review of the new hadron states. Rept. Prog. Phys., 86(2):026201, 2023.
  17. Steven Weinberg. Evidence That the Deuteron Is Not an Elementary Particle. Phys. Rev., 137:B672–B678, 1965.
  18. Steven Weinberg. Nuclear forces from chiral Lagrangians. Phys. Lett. B, 251:288–292, 1990.
  19. Steven Weinberg. Effective chiral Lagrangians for nucleon - pion interactions and nuclear forces. Nucl. Phys. B, 363:3–18, 1991.
  20. A New expansion for nucleon-nucleon interactions. Phys. Lett. B, 424:390–396, 1998.
  21. Two nucleon systems from effective field theory. Nucl. Phys. B, 534:329–355, 1998.
  22. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B, 321:311–342, 1989.
  23. The Spectrum of QCD and Chiral Lagrangians of the Strong and Weak Interactions. Phys. Rev. D, 39:1947, 1989.
  24. S. Mandelstam. Phys. Rev. 112, 1344 (1958); 115, 1741 and 1952 (1959).
  25. J. Kennedy and T. D. Spearman. Singularities in partial-wave amplitudes for two ingoing and two outgoing particles. Phys. Rev., 126:1596–1602, May 1962.
  26. The Inverse Amplitude Method and Adler Zeros. Phys. Rev. D, 77:056006, 2008.
  27. A. Gomez Nicola and J. R. Pelaez. Meson meson scattering within one loop chiral perturbation theory and its unitarization. Phys. Rev. D, 65:054009, 2002.
  28. Extended coupled channels model for pi N scattering and the structure of N*(1440) and N*(1535). Phys. Rev. C, 57:1464–1477, 1998.
  29. What is the structure of the Roper resonance? Phys. Rev. C, 62:025207, 2000.
  30. L. D. Faddeev. Mathematical Aspects of the Three BodyProblem(Davey, New York, 1965).
  31. Relativistic three-body theory with applications to pi-minus n scattering. Phys. Rev., 174:2022–2032, 1968.
  32. A Meson exchange model for pi rho scattering. Phys. Rev. C, 49:2763–2776, 1994.
  33. Roel Aaij et al. Observation of an exotic narrow doubly charmed tetraquark. Nature Phys., 18(7):751–754, 2022.
  34. Roel Aaij et al. Study of the doubly charmed tetraquark Tc⁢c+superscriptsubscript𝑇𝑐𝑐T_{cc}^{+}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT. Nature Commun., 13(1):3351, 2022.
  35. FOUR QUARK BOUND STATES. Z. Phys. C, 30:457, 1986.
  36. Harry J. Lipkin. A MODEL INDEPENDENT APPROACH TO MULTI - QUARK BOUND STATES. Phys. Lett. B, 172:242–247, 1986.
  37. L. Heller and J. A. Tjon. On the Existence of Stable Dimesons. Phys. Rev. D, 35:969, 1987.
  38. Stability of Dimesons. Phys. Rev. D, 37:744, 1988.
  39. B. Silvestre-Brac and C. Semay. Systematics of L = 0 q-2 anti-q-2 systems. Z. Phys. C, 57:273–282, 1993.
  40. Tetraquarks with color blind forces in chiral quark models. Phys. Lett. B, 393:119–123, 1997.
  41. Tetraquarks with heavy flavors. Phys. Rev. D, 57:6778–6787, 1998.
  42. D. Janc and M. Rosina. The Tc⁢c=D⁢D*subscript𝑇𝑐𝑐𝐷superscript𝐷T_{cc}=DD^{*}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT = italic_D italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT molecular state. Few Body Syst., 35:175–196, 2004.
  43. QQ anti-q anti-q four-quark bound states in chiral SU(3) quark model. Commun. Theor. Phys., 50:437–440, 2008.
  44. Four-quark spectroscopy within the hyperspherical formalism. Phys. Rev. D, 73:054004, 2006.
  45. Do c⁢c¯⁢n⁢n¯𝑐¯𝑐𝑛¯𝑛c\bar{c}n\bar{n}italic_c over¯ start_ARG italic_c end_ARG italic_n over¯ start_ARG italic_n end_ARG bound states exist? Phys. Rev. D, 76:094022, 2007.
  46. QCD sum rules study of QQ - anti-u anti-d mesons. Phys. Lett. B, 649:166–172, 2007.
  47. Exotic Q Q anti-q anti-q states in QCD. Nucl. Phys. B, 399:17–33, 1993.
  48. Doubly charmed exotic mesons: A gift of nature? Phys. Lett. B, 699:291–295, 2011.
  49. Exotic mesons with double charm and bottom flavor. Phys. Rev. D, 86:034019, 2012.
  50. Doubly heavy tetraquarks in a chiral-diquark picture. Phys. Rev. D, 105(7):074021, 2022.
  51. Double-heavy tetraquarks with strangeness in the chiral quark model*. Chin. Phys. C, 47(2):023102, 2023.
  52. D0D0π𝜋\piitalic_π+ mass distribution in the production of the Tcc exotic state. Phys. Rev. D, 104(11):114015, 2021.
  53. A survey of heavy–heavy hadronic molecules. Commun. Theor. Phys., 73(12):125201, 2021.
  54. Pole analysis on the doubly charmed meson in D0D0π𝜋\piitalic_π+ mass spectrum. Phys. Rev. D, 105(5):L051507, 2022.
  55. M. Albaladejo. Tcc+ coupled channel analysis and predictions. Phys. Lett. B, 829:137052, 2022.
  56. Coupled-channel approach to Tcc+ including three-body effects. Phys. Rev. D, 105(1):014024, 2022.
  57. Possible molecular states of D(*)⁢D(*)superscript𝐷superscript𝐷D^{(*)}D^{(*)}italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT and B(*)⁢B(*)superscript𝐵superscript𝐵B^{(*)}B^{(*)}italic_B start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT within the Bethe–Salpeter framework. Eur. Phys. J. C, 82(2):144, 2022.
  58. Luciano M. Abreu. A note on the possible bound D(*)D(*),B¯(*)B¯(*) and D(*)B¯(*) states. Nucl. Phys. B, 985:115994, 2022.
  59. Qi Xin and Zhi-Gang Wang. Analysis of the doubly-charmed tetraquark molecular states with the QCD sum rules. Eur. Phys. J. A, 58(6):110, 2022.
  60. Heavy- and light-flavor symmetry partners of the Tc⁢c+⁢(3875)superscriptsubscript𝑇𝑐𝑐3875T_{cc}^{+}(3875)italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( 3875 ), the X⁢(3872)𝑋3872X(3872)italic_X ( 3872 ) and the X⁢(3960)𝑋3960X(3960)italic_X ( 3960 ) from light-meson exchange saturation. 4 2023.
  61. Triangle singularity in the production of Tcc+(3875) and a soft pion. Phys. Rev. D, 106(3):034033, 2022.
  62. M. Padmanath and S. Prelovsek. Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on the Lattice. Phys. Rev. Lett., 129(3):032002, 2022.
  63. Tcc+(3875) relevant DD* scattering from Nf=2 lattice QCD. Phys. Lett. B, 833:137391, 2022.
  64. Doubly Charmed Tetraquark Tcc+ from Lattice QCD near Physical Point. Phys. Rev. Lett., 131(16):161901, 2023.
  65. Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data: Case Study for Tcc(3875)+. Phys. Rev. Lett., 131(13):131903, 2023.
  66. Production of doubly charmed exotic hadrons in heavy ion collisions. Phys. Rev. D, 104(11):L111502, 2021.
  67. Can we understand the decay width of the Tcc+ state? Phys. Lett. B, 826:136897, 2022.
  68. Probing the long-range structure of the Tcc+ with the strong and electromagnetic decays. Phys. Rev. D, 104(5):051502, 2021.
  69. Subleading contributions to the decay width of the Tcc+ tetraquark. Phys. Rev. D, 105(1):014007, 2022.
  70. M. Pavon Valderrama. Power Counting and Perturbative One Pion Exchange in Heavy Meson Molecules. Phys. Rev. D, 85:114037, 2012.
  71. Is rho Meson a Dynamical Gauge Boson of Hidden Local Symmetry? Phys. Rev. Lett., 54:1215, 1985.
  72. Nonlinear Realization and Hidden Local Symmetries. Phys. Rept., 164:217–314, 1988.
  73. On the Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries. Nucl. Phys. B, 259:493, 1985.
  74. Ulf G. Meissner. Low-Energy Hadron Physics from Effective Chiral Lagrangians with Vector Mesons. Phys. Rept., 161:213, 1988.
  75. Hidden gauge formalism for the radiative decays of axial-vector mesons. Phys. Rev. D, 79:014015, 2009.
  76. Line shapes of the Zb⁢(10610)subscript𝑍𝑏10610Z_{b}(10610)italic_Z start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( 10610 ) and Zb⁢(10650)subscript𝑍𝑏10650Z_{b}(10650)italic_Z start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ( 10650 ) in the elastic and inelastic channels revisited. Phys. Rev. D, 98(7):074023, 2018.
  77. Mark B. Wise. Chiral perturbation theory for hadrons containing a heavy quark. Phys. Rev. D, 45(7):R2188, 1992.
  78. Strong decays of excited heavy mesons in chiral perturbation theory. Phys. Lett. B, 292:119–127, 1992.
  79. Chiral perturbation theory for f D(s) / f D and B B(s) / B B. Nucl. Phys. B, 380:369–376, 1992.
  80. Phenomenology of heavy meson chiral Lagrangians. Phys. Rept., 281:145–238, 1997.
  81. Coupled-channel analysis of the possible D(*)⁢D(*)superscript𝐷superscript𝐷{D}^{\mathbf{(}*\mathbf{)}}{D}^{\mathbf{(}*\mathbf{)}}italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT, b¯(*)⁢b¯(*)superscript¯𝑏superscript¯𝑏{\overline{b}}^{\mathbf{(}*\mathbf{)}}{\overline{b}}^{\mathbf{(}*\mathbf{)}}over¯ start_ARG italic_b end_ARG start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT over¯ start_ARG italic_b end_ARG start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT and D(*)⁢b¯(*)superscript𝐷superscript¯𝑏{D}^{\mathbf{(}*\mathbf{)}}{\overline{b}}^{\mathbf{(}*\mathbf{)}}italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT over¯ start_ARG italic_b end_ARG start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT molecular states. Phys. Rev. D, 88:114008, Dec 2013.
  82. J. Hofmann and M. F. M. Lutz. Coupled-channel study of crypto-exotic baryons with charm. Nucl. Phys. A, 763:90–139, 2005.
  83. The Zc⁢s⁢(3985)subscript𝑍𝑐𝑠3985Z_{cs}(3985)italic_Z start_POSTSUBSCRIPT italic_c italic_s end_POSTSUBSCRIPT ( 3985 ) as a threshold effect from the D¯s*⁢D+D¯s⁢D*superscriptsubscript¯𝐷𝑠𝐷subscript¯𝐷𝑠superscript𝐷\bar{D}_{s}^{*}D+\bar{D}_{s}D^{*}over¯ start_ARG italic_D end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_D + over¯ start_ARG italic_D end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT interaction. Phys. Lett. B, 814:136120, 2021.
  84. Is X(3872) a molecule? Phys. Rev. D, 78:034007, 2008.
  85. Gong. paper1, in preparation.
  86. P. Wang and X. G. Wang. Study on X(3872) from effective field theory with pion exchange interaction. Phys. Rev. Lett., 111(4):042002, 2013.
  87. Remarks on study of X(3872) from effective field theory with pion-exchange interaction. Phys. Rev. D, 91(3):034002, 2015.
  88. Predicting another doubly charmed molecular resonance Tcc’+ (3876). Phys. Rev. D, 104(11):114042, 2021.
  89. Double-charm tetraquark under the complex scaling method. Phys. Rev. D, 106(1):016012, 2022.
  90. Pions and Nuclei. Clarendon Press, Oxford, UK, 1988.
  91. Three-body D⁢D¯⁢π𝐷¯𝐷𝜋D\bar{D}\piitalic_D over¯ start_ARG italic_D end_ARG italic_π dynamics for the X(3872). Phys. Rev. D, 84:074029, 2011.
  92. Coupled-channel approach to Tc⁢c+superscriptsubscript𝑇𝑐𝑐{T}_{cc}^{+}italic_T start_POSTSUBSCRIPT italic_c italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT including three-body effects. Phys. Rev. D, 105:014024, Jan 2022.
  93. Heavy-hadron molecules from light-meson-exchange saturation. Phys. Rev. D, 102:114020, 2020.
  94. Coupled-channel effects of the ΣΣ\Sigmaroman_Σc(*)D¯(*)-ΛΛ\Lambdaroman_Λc(2595)D¯ system and molecular nature of the Pc pentaquark states from one-boson exchange model. Phys. Rev. D, 104(9):094039, 2021.
  95. Prediction of a Narrow Exotic Hadronic State with Quantum Numbers JPC=0–. Phys. Rev. Lett., 129(10):102002, 2022.
  96. Pole position of the a1(1260) resonance in a three-body unitary framework. Phys. Rev. D, 105(5):054020, 2022.
  97. Different pole structures in line shapes of the X⁢(3872)𝑋3872X(3872)italic_X ( 3872 ). Eur. Phys. J. C, 77(6):399, 2017.
  98. Pion interactions in the X⁢(3872)𝑋3872X(3872)italic_X ( 3872 ). Phys. Rev. D, 76:034006, 2007.
  99. Light quark mass dependence of the X(3872) in an effective field theory. Phys. Rev. D, 89(1):014033, 2014.
  100. Analytic properties of the scattering amplitude and resonances parameters in a meson exchange model. Nucl. Phys. A, 829:170–209, 2009.
  101. Relevance of complex branch points for partial wave analysis. Phys. Rev. C, 84:015205, Jul 2011.
  102. Dynamically generated open and hidden charm meson systems. Phys. Rev. D, 76:074016, 2007.
  103. J. Nieves and M. Pavon Valderrama. The Heavy Quark Spin Symmetry Partners of the X(3872). Phys. Rev. D, 86:056004, 2012.
  104. Charmonium-like resonances with JP⁢C𝑃𝐶{}^{PC}start_FLOATSUPERSCRIPT italic_P italic_C end_FLOATSUPERSCRIPT = 0++absent{}^{++}start_FLOATSUPERSCRIPT + + end_FLOATSUPERSCRIPT, 2++absent{}^{++}start_FLOATSUPERSCRIPT + + end_FLOATSUPERSCRIPT in coupled D⁢D¯D¯D\mathrm{D}\overline{\mathrm{D}}roman_D over¯ start_ARG roman_D end_ARG, Ds⁢D¯ssubscriptDssubscript¯Ds{\mathrm{D}}_{\mathrm{s}}{\overline{\mathrm{D}}}_{\mathrm{s}}roman_D start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT over¯ start_ARG roman_D end_ARG start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT scattering on the lattice. JHEP, 06:035, 2021.
  105. Detecting the long-distance structure of the X𝑋Xitalic_X(3872). Eur. Phys. J. C, 74(5):2885, 2014.
  106. Revisiting X⁢(3872)→D0⁢D¯0⁢π0→𝑋3872superscript𝐷0superscript¯𝐷0superscript𝜋0X(3872)\to D^{0}\bar{D}^{0}\pi^{0}italic_X ( 3872 ) → italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT over¯ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT in an effective field theory for the X𝑋Xitalic_X(3872). Phys. Rev. D, 101(5):054024, 2020.
  107. M. Ablikim et al. Observation of a charged charmoniumlike structure in e+⁢e−→(D*⁢D¯*)±⁢π∓→superscript𝑒superscript𝑒superscriptsuperscript𝐷superscript¯𝐷plus-or-minussuperscript𝜋minus-or-pluse^{+}e^{-}\to(D^{*}\bar{D}^{*})^{\pm}\pi^{\mp}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → ( italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT over¯ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT ∓ end_POSTSUPERSCRIPT at s=4.26𝑠4.26\sqrt{s}=4.26square-root start_ARG italic_s end_ARG = 4.26GeV. Phys. Rev. Lett., 112(13):132001, 2014.
  108. M. Ablikim et al. Observation of a Charged Charmoniumlike Structure Zcsubscript𝑍𝑐Z_{c}italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT(4020) and Search for the Zcsubscript𝑍𝑐Z_{c}italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT(3900) in e+⁢e−→π+⁢π−⁢hc→superscript𝑒superscript𝑒superscript𝜋superscript𝜋subscriptℎ𝑐e^{+}e^{-}\to\pi^{+}\pi^{-}h_{c}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. Phys. Rev. Lett., 111(24):242001, 2013.
  109. M. Aghasyan et al. Search for muoproduction of X⁢(3872)𝑋3872X(3872)italic_X ( 3872 ) at COMPASS and indication of a new state X~⁢(3872)~𝑋3872\widetilde{X}(3872)over~ start_ARG italic_X end_ARG ( 3872 ). Phys. Lett. B, 783:334–340, 2018.
  110. The Vector and Axial-Vector Charmonium-like States. Phys. Rev. D, 83:034010, 2011.
  111. Zhi-Gang Wang. Analysis of the Hidden-charm Tetraquark molecule mass spectrum with the QCD sum rules. Int. J. Mod. Phys. A, 36(15):2150107, 2021.
  112. Does the JPC=1+- counterpart of the X(3872) exist? Phys. Lett. B, 829:137083, 2022.
  113. R. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 2022.
  114. Prediction of an I=1𝐼1I=1italic_I = 1 D⁢D¯*𝐷superscript¯𝐷D\bar{D}^{*}italic_D over¯ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT state and relationship to the claimed Zc⁢(3900)subscript𝑍𝑐3900Z_{c}(3900)italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 3900 ), Zc⁢(3885)subscript𝑍𝑐3885Z_{c}(3885)italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 3885 ). Phys. Rev. D, 90(1):016003, 2014.
  115. Search for Zc+subscriptsuperscript𝑍𝑐Z^{+}_{c}italic_Z start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT(3900) in the 1+−superscript1absent1^{+-}1 start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT Channel on the Lattice. Phys. Lett. B, 727:172–176, 2013.
  116. Fate of the Tetraquark Candidate Zcsubscript𝑍𝑐Z_{c}italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT(3900) from Lattice QCD. Phys. Rev. Lett., 117(24):242001, 2016.
  117. Ying Chen et al. Low-energy scattering of the (D⁢D¯*)±superscript𝐷superscript¯𝐷plus-or-minus(D\bar{D}^{*})^{\pm}( italic_D over¯ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT system and the resonance-like structure Zc⁢(3900)subscript𝑍𝑐3900Z_{c}(3900)italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 3900 ). Phys. Rev. D, 89(9):094506, 2014.
  118. Towards the understanding of Zc⁢(3900)subscript𝑍𝑐3900Z_{c}(3900)italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 3900 ) from lattice QCD. Phys. Rev. D, 101(5):054502, 2020.
  119. M. Ablikim et al. Observation of a Charged Charmoniumlike Structure in e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT J/ψ𝜓\psiitalic_ψ at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG =4.26 GeV. Phys. Rev. Lett., 110:252001, 2013.
  120. Z. Q. Liu et al. Study of e+⁢e−→π+⁢π−⁢J/ψ→superscript𝑒superscript𝑒superscript𝜋superscript𝜋𝐽𝜓e^{+}e^{-}\to\pi^{+}\pi^{-}J/\psiitalic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_J / italic_ψ and Observation of a Charged Charmoniumlike State at Belle. Phys. Rev. Lett., 110:252002, 2013. [Erratum: Phys.Rev.Lett. 111, 019901 (2013)].
  121. M. Ablikim et al. Observation of a charged (D⁢D¯*)±superscript𝐷superscript¯𝐷plus-or-minus(D\bar{D}^{*})^{\pm}( italic_D over¯ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT mass peak in e+⁢e−→π⁢D⁢D¯*→superscript𝑒superscript𝑒𝜋𝐷superscript¯𝐷e^{+}e^{-}\to\pi D\bar{D}^{*}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_π italic_D over¯ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 4.26 GeV. Phys. Rev. Lett., 112(2):022001, 2014.
  122. Decoding the riddle of Y⁢(4260)𝑌4260Y(4260)italic_Y ( 4260 ) and Zc⁢(3900)subscript𝑍𝑐3900Z_{c}(3900)italic_Z start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 3900 ). Phys. Rev. Lett., 111(13):132003, 2013.
  123. Systematic study of the singularity mechanism in heavy quarkonium decays. Phys. Lett. B, 725(1-3):106–110, 2013.
  124. Correlation of the hidden-charm molecular tetraquarks and the charmoniumlike structures existing in the B→X⁢Y⁢Z+K→𝐵𝑋𝑌𝑍𝐾B\to XYZ+Kitalic_B → italic_X italic_Y italic_Z + italic_K process. Phys. Rev. D, 104(9):094010, 2021.
  125. The exact discontinuity of a partial wave along the left-hand cut and the exact N/D𝑁𝐷N/Ditalic_N / italic_D method in non-relativistic scattering. Annals Phys., 411:167965, 2019.
  126. This is understandable since the three-body cuts enter into two aspects, i.e. the D⁢π𝐷𝜋D\piitalic_D italic_π self-energy and the on-shell OPE.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com