Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconventional conformal invariance of maximal depth partially massless fields on $dS_{4}$ and its relation to complex partially massless SUSY (2311.10060v5)

Published 16 Nov 2023 in hep-th, math-ph, and math.MP

Abstract: Deser and Waldron have shown that maximal depth partially massless theories of higher integer spin on 4-dimensional de Sitter spacetime ($dS_{4}$) possess infinitesimal symmetries generated by the conformal Killing vectors of $dS_{4}$. However, it was later shown by Barnich, Bekaert, and Grigoriev that these theories are not invariant under the conformal algebra $so(4,2)$. To get some insight into these seemingly contradicting results we write down the full set of infinitesimal transformations generated by the 15 conformal Killing vectors of $dS_{4}$. Although the infinitesimal transformations generated by the 10 dS Killing vectors are known, the transformations generated by the 5 non-Killing conformal Killing vectors were absent from the literature, and we show that they have an `unconventional' form. In the spin-2 case, we show that the field equations and the action are invariant under the unconventional conformal transformations. For spin $s >2$, the invariance is demonstrated only at the level of the field equations. For all spins $s \geq 2$, we reproduce the result that the symmetry algebra does not close on $so(4,2)$. This is due to the appearance of higher-derivative symmetries in the commutator of two unconventional conformal transformations. Our results concerning the closure of the full algebra are inconclusive. Then we shift focus to the question of supersymmetry (SUSY) on $dS_{4}$ and our objective is twofold. First, we uncover a non-interacting supermultiplet that consists of a complex partially massless spin-2 field and a complex spin-3/2 field on $dS_{4}$. Second, we showcase the appearance of the unconventional conformal symmetries in the commutator of two SUSY transformations. Thus, this commutator closes on an algebra that is neither $so(4,1)$ nor $so(4,2)$, while its full structure is an open question. More open questions arising from our findings are also discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. SUPERNOVA COSMOLOGY PROJECT collaboration, Measurements of ΩΩ{\Omega}roman_Ω and ΛΛ{\Lambda}roman_Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565 (1999).
  2. SDSS collaboration, Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample, Mon. Not. Roy. Astron. Soc. 401, 2148 (2010), https://academic.oup.com/mnras/article-pdf/401/4/2148/3901461/mnras0401-2148.pdf .
  3. PLANCK collaboration, Planck 2018 results - VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020).
  4. S. Deser and A. Waldron, Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations, Phys. Lett. B 513, 137 (2001a), arXiv:hep-th/0105181 .
  5. S. Deser and A. Waldron, Stability of massive cosmological gravitons, Phys. Lett. B 508, 347 (2001b), arXiv:hep-th/0103255 .
  6. S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS, Phys. Rev. Lett. 87, 031601 (2001c), arXiv:hep-th/0102166 .
  7. S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nuclear Physics 607, 577 (2001d).
  8. S. Deser and A.Waldron, Conformal invariance of partially massless higher spins, Physics Letters B 603, 30 (2004).
  9. S. Deser and R. I. Nepomechie, Anomalous propagation of gauge fields in conformally flat spaces, Physics Letters B 132, 321 (1983).
  10. S. Deser and R. I. Nepomechie, Gauge invariance versus masslessness in de sitter spaces, Annals of Physics 154, 396 (1984).
  11. A. Higuchi, Symmetric tensor spherical harmonics on the N𝑁Nitalic_N-sphere and their application to the de Sitter group S⁢O⁢(N,1)𝑆𝑂𝑁1{SO}(N,1)italic_S italic_O ( italic_N , 1 ), J. Math. Phys. 28, 1553 (1987a).
  12. A. Higuchi, Quantum fields of nonzero spin in De Sitter spacetime, PhD dissertation, Yale University  (1987b).
  13. T. Basile, X. Bekaert, and N. Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance, Journal of High Energy Physics 2017, 1 (2016).
  14. V. A. Letsios,  (Non-)unitarity of strictly and partially massless fermions on de Sitter space, J. High Energ. Phys. 2023, 15 (2023).
  15. T. Anous, D. Z. Freedman  and A. Maloney,  de Sitter supersymmetry revisited, J. High Energ. Phys. 2014, 119 (2014).
  16. B. Allen, Graviton propagator in de sitter space, Phys. Rev. D 34, 3670 (1986).
  17. D. Z. Freedman and A. Van Proeyen, Supergravity (Cambridge University Press, 2012).
  18. A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter spacetime, Nuclear Physics B 282, 397-436 (1987).
  19. G. Barnich,  X. Bekaert  and M. Grigoriev, Notes on conformal invariance of gauge fields,  Journal of Physics A: Mathematical and Theoretical 48, 505402 (2015).
  20. D. A. Galante, Modave lectures on de Sitter space & holography, PoS Modave2022 435, 003 (2023).
  21. D. Anninos,  P. B. Genolini, and B. Mühlmann,  d⁢S2𝑑subscript𝑆2dS_{2}italic_d italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Supergravity, (arXiv, 2023), arXiv:2309.02480 .
  22. S. Deser, E. Joung, and A. Waldron,  Gravitational- and self-coupling of partially massless spin 2 , Phys. Rev. D 86, 104004 (2012).
  23. Z. Sun,  A note on the representations of SO(1,d+1), (arXiv, 2021), arXiv:2111.04591 .
  24. G. Sengör,  The de Sitter group and its presence at the late-time boundary, PoS 2022, CORFU2021, 356 .
  25. C. de Rham, K. Hinterbichler, and L. A. Johnson,  On the (A)dS decoupling limits of massive gravity , J. High Energ. Phys. 2018, 154 (2018).
  26. V. A. Letsios,  New conformal-like symmetry of strictly massless fermions in four-dimensional de Sitter space, (arXiv, 2023),  arXiv:2310.01702 .
  27. A. Higuchi, and V. A. Letsios,   In preparation .
  28. K. Pilch, P. van Nieuwenhuizen, and M. F. Sohnius, De Sitter Superalgebras and Supergravity, Commun. Math. Phys. 98, 105 (1985).
  29. S. Garcia-Saenz, K. Hinterbichle, and R. A. Rosen, Supersymmetric partially massless fields and non-unitary superconformal representations, J. High Energ. Phys. 2018, 166 (2018).
  30. N. Boulanger,  G. Lhost, and S. Thome’e,  Consistent couplings between a massive spin-3/2 field and a partially massless spin-2 field, (arXiv, 2023),  arXiv:2310.05522 [ .
  31. A. Rios Fukelman,  M. Sempé, and G. A. Silva,  Notes on Gauge Fields and Discrete Series representations in de Sitter spacetimes, (arXiv, 2023),  arXiv:2310.14955 .
  32. V. A. Letsios,  (Non-)unitarity of strictly and partially massless fermions on de Sitter space II: An explanation based on the group-theoretic properties of the spin-3/2 and spin-5/2 eigenmodes, Journal of Physics A: Mathematical and Theoretical (2024)  .
  33. K. Hristov,  A. Tomasiello, and A. Zaffaroni,  Supersymmetry on three-dimensional Lorentzian curved spaces and black hole holography,  J. High Energ. Phys. 2013, 57 (2013).
  34. E. I. Buchbinder,  D. Hutchings,   S. M. Kuzenko and M. Ponds,  AdS superprojectors,  J. High Energ. Phys. 2021, 74 (2021).
  35. J. Lukierski,  and A. Nowicki,  All possible de Sitter superalgebras and the presence of ghosts,  Physics Letters B 151, 382-386 (1985).
  36. D. Anninos,  D. A. Galante, and B. Mühlmann,  Finite features of quantum de Sitter space,  Classical and Quantum Gravity 40, 025009 (2023).
  37. Y. M. Zinoviev, On Partially Massless Supergravity, Phys. Part. Nuclei  49, 850 - 853 (2018).
  38. V. Schaub, Spinors in (Anti-)de Sitter Space, Journal of High Energy Physics 2023, 142 (2023).
Citations (3)

Summary

We haven't generated a summary for this paper yet.