Entanglement buffering with two quantum memories (2311.10052v3)
Abstract: Quantum networks crucially rely on the availability of high-quality entangled pairs of qubits, known as entangled links, distributed across distant nodes. Maintaining the quality of these links is a challenging task due to the presence of time-dependent noise, also known as decoherence. Entanglement purification protocols offer a solution by converting multiple low-quality entangled states into a smaller number of higher-quality ones. In this work, we introduce a framework to analyse the performance of entanglement buffering setups that combine entanglement consumption, decoherence, and entanglement purification. We propose two key metrics: the availability, which is the steady-state probability that an entangled link is present, and the average consumed fidelity, which quantifies the steady-state quality of consumed links. We then investigate a two-node system, where each node possesses two quantum memories: one for long-term entanglement storage, and another for entanglement generation. We model this setup as a continuous-time stochastic process and derive analytical expressions for the performance metrics. Our findings unveil a trade-off between the availability and the average consumed fidelity. We also bound these performance metrics for a buffering system that employs the well-known bilocal Clifford purification protocols. Importantly, our analysis demonstrates that, in the presence of noise, consistently purifying the buffered entanglement increases the average consumed fidelity, even when some buffered entanglement is discarded due to purification failures.
- Efficient high-fidelity quantum computation using matter qubits and linear optics. Physical Review A, 71(6):060310, 2005.
- Brokered graph-state quantum computation. New Journal of Physics, 8(8):141, 2006.
- Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 76(5):722, 1996.
- Mixed-state entanglement and quantum error correction. Physical Review A, 54(5):3824, 1996.
- Heralded entanglement between solid-state qubits separated by three metres. Nature, 497(7447):86–90, 2013.
- Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret key rate. Physical Review A, 87(6):062335, 2013.
- Scheduling quantum teleportation with noisy memories. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 437–446. IEEE, 2022.
- How to share a quantum secret. Physical review letters, 83(3):648, 1999.
- Tools for the analysis of quantum protocols requiring state generation within a time window. arXiv preprint arXiv:2304.12673, 2023.
- Local permutations of products of bell states and entanglement distillation. Physical Review A, 67(2):022310, 2003.
- Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett., 77(13):2818, 1996.
- Quantum repeaters based on entanglement purification. Phys. Rev. A, 59(1):169, 1999.
- Standard forms of noisy quantum operations via depolarization. Phys. Rev. A, 72(5):052326, 2005.
- Artur K Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67(6):661, 1991.
- On the fidelity distribution of link-level entanglements under purification. arXiv preprint arXiv:2310.18198, 2023.
- Near-term n𝑛nitalic_n to k𝑘kitalic_k distillation protocols using graph codes. arXiv preprint arXiv:2303.11465, 2023.
- Daniel Gottesman. The heisenberg representation of quantum computers. arXiv preprint quant-ph/9807006, 1998.
- Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review A, 57(1):127, 1998.
- Probability and random processes. Oxford university press, 2020.
- Quantum secret sharing. Physical Review A, 59(3):1829, 1999.
- General teleportation channel, singlet fraction, and quasidistillation. Physical Review A, 60(3):1888, 1999.
- Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1):1–8, 1996.
- Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs. npj Quantum Information, 9(1):46, 2023.
- Performance metrics for the continuous distribution of entanglement in multiuser quantum networks. Physical Review A, 108(5):052615, 2023.
- Enumerating all bilocal clifford distillation protocols through symmetry reduction. Quantum, 6:715, 2022.
- Entanglement distillation between solid-state quantum network nodes. Science, 356(6341):928–932, 2017.
- A quantum router architecture for high-fidelity entanglement flows in quantum networks. npj Quantum Information, 8(1):75, 2022.
- Efficient optimization of cut-offs in quantum repeater chains. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 158–168. IEEE, 2020.
- A multinode quantum network over a metropolitan area. arXiv preprint arXiv:2309.00221, 2023.
- Renewal processes. Springer, 2014.
- On the analysis of a multipartite entanglement distribution switch. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(2):1–39, 2020.
- Quantum computation and quantum information. American Association of Physics Teachers, 2002.
- Asher Peres. Separability criterion for density matrices. Physical Review Letters, 77(8):1413, 1996.
- Realization of a multinode quantum network of remote solid-state qubits. Science, 372(6539):259–264, 2021.
- A quantum overlay network for efficient entanglement distribution. In IEEE INFOCOM 2023-IEEE Conference on Computer Communications, pages 1–10. IEEE, 2023.
- Ludmiła Praxmeyer. Reposition time in probabilistic imperfect memories. arXiv preprint arXiv:1309.3407, 2013.
- Waiting time in quantum repeaters with probabilistic entanglement swapping. Physical Review A, 100(3):032322, 2019.
- On the capacity region of bipartite and tripartite entanglement switching. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 8(1-2):1–18, 2023.
- Entanglement purification on quantum networks. Physical Review Research, 5(3):033171, 2023.
- Quantum internet: A vision for the road ahead. Science, 362(6412):eaam9288, 2018.
- Reinhard F Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40(8):4277, 1989.
- Entanglement purification and protection in a superconducting quantum network. Physical Review Letters, 128(8):080504, 2022.
- Advances in quantum entanglement purification. Science China Physics, Mechanics & Astronomy, 66(5):250301, 2023.