Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning (2311.09724v2)

Published 16 Nov 2023 in cs.AI and cs.CL

Abstract: LLMs often struggle with maintaining accuracy throughout multiple multiple reasoning steps, especially in mathematical reasoning where an error in earlier steps can propagate to subsequent ones and it ultimately leading to an incorrect answer. To reduce error propagation, guided decoding is employed to direct the LM decoding on a step-by-step basis. We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness, as the former approach leads towards a correct final answer. This transforms the task into a $\textit{value estimation}$ problem in planning. Inspired by the findings that $\textit{outcome supervision for guided decoding essentially acts as a value model}$, we propose Outcome-supervised Value Model (OVM) that employs outcome supervision for training a value model, which prioritizes steps that lead to accurate conclusions. Furthermore, the OVM eliminates the need for labor-intensive annotations of step-level correctness, thereby significantly enhancing its scalability. Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model. Notably, in GSM8K, our $\textbf{OVM-7B model achieves state-of-the-art results among LLMs up to 13B parameters}$; especially it does not utilize GPT-4 or code execution. These findings offer a novel perspective on the role of outcome supervision in training value models for multi-step reasoning tasks and provide theoretical justification for its advantage in value estimation for guided decoding.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fei Yu (76 papers)
  2. Anningzhe Gao (22 papers)
  3. Benyou Wang (109 papers)
Citations (20)
Github Logo Streamline Icon: https://streamlinehq.com