Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstructing Continuous Light Field From Single Coded Image (2311.09646v1)

Published 16 Nov 2023 in cs.CV, cs.GR, and eess.IV

Abstract: We propose a method for reconstructing a continuous light field of a target scene from a single observed image. Our method takes the best of two worlds: joint aperture-exposure coding for compressive light-field acquisition, and a neural radiance field (NeRF) for view synthesis. Joint aperture-exposure coding implemented in a camera enables effective embedding of 3-D scene information into an observed image, but in previous works, it was used only for reconstructing discretized light-field views. NeRF-based neural rendering enables high quality view synthesis of a 3-D scene from continuous viewpoints, but when only a single image is given as the input, it struggles to achieve satisfactory quality. Our method integrates these two techniques into an efficient and end-to-end trainable pipeline. Trained on a wide variety of scenes, our method can reconstruct continuous light fields accurately and efficiently without any test time optimization. To our knowledge, this is the first work to bridge two worlds: camera design for efficiently acquiring 3-D information and neural rendering.

Citations (1)

Summary

We haven't generated a summary for this paper yet.