Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RENI++ A Rotation-Equivariant, Scale-Invariant, Natural Illumination Prior (2311.09361v1)

Published 15 Nov 2023 in cs.CV

Abstract: Inverse rendering is an ill-posed problem. Previous work has sought to resolve this by focussing on priors for object or scene shape or appearance. In this work, we instead focus on a prior for natural illuminations. Current methods rely on spherical harmonic lighting or other generic representations and, at best, a simplistic prior on the parameters. This results in limitations for the inverse setting in terms of the expressivity of the illumination conditions, especially when taking specular reflections into account. We propose a conditional neural field representation based on a variational auto-decoder and a transformer decoder. We extend Vector Neurons to build equivariance directly into our architecture, and leveraging insights from depth estimation through a scale-invariant loss function, we enable the accurate representation of High Dynamic Range (HDR) images. The result is a compact, rotation-equivariant HDR neural illumination model capable of capturing complex, high-frequency features in natural environment maps. Training our model on a curated dataset of 1.6K HDR environment maps of natural scenes, we compare it against traditional representations, demonstrate its applicability for an inverse rendering task and show environment map completion from partial observations. We share our PyTorch implementation, dataset and trained models at https://github.com/JADGardner/ns_reni

Citations (2)

Summary

We haven't generated a summary for this paper yet.