Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposing the Spectral Form Factor (2311.09292v3)

Published 15 Nov 2023 in quant-ph, cond-mat.stat-mech, hep-th, math-ph, math.MP, and nlin.CD

Abstract: Correlations between the energies of a system's spectrum are one of the defining features of quantum chaos. They can be probed using the Spectral Form Factor (SFF). We investigate how each spectral distance contributes in building this two-point correlation function. Specifically, starting from the spectral distribution of $k$-th neighbor level spacing ($k$nLS), we provide analytical expressions for the $k$-th neighbor Spectral Form Factor ($k$nSFF). We do so for the three Gaussian Random Matrix ensembles and the `Poissonian' ensemble of uncorrelated energy levels. We study the properties of the $k$nSFF, namely its minimum value and the time at which this minimum is reached, as well as the energy spacing with the deepest $k$nSFF. This allows us to quantify the contribution of each individual $k$nLS to the SFF ramp, which is a characteristic feature of quantum chaos. In particular, we show how the onset of the ramp, characterized either by the dip or the Thouless time, shifts to shorter times as contributions from longer-range spectral distance are included. Interestingly, the even and odd neighbors contribute quite distinctively, the first being the most important to built the ramp. They respectively yield a resonance or antiresonance in the ramp. All of our analytical results are tested against numerical realizations of random matrices. We complete our analysis and show how the introduced tools help characterize the spectral properties of a physical many-body system by looking at the interacting XXZ Heisenberg model with local on-site disorder that allows transitioning between the chaotic and integrable regimes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. J.-S. Caux and J. Mossel, Remarks on the notion of quantum integrability, Journal of Statistical Mechanics: Theory and Experiment 2011, P02023 (2011).
  2. M. L. Mehta, Random matrices (Elsevier, 2004).
  3. F. Haake, Quantum signatures of chaos (Springer, 1991).
  4. E. P. Wigner, Results and theory of resonance absorption, Conference on Neutron Physics by Time of Flight  (1956), p. 59.
  5. E. P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Mathematical Proceedings of the Cambridge Philosophical Society 47, 790–798 (1951).
  6. M. Gaudin, Sur la loi limite de l’espacement des valeurs propres d’une matrice aléatoire, Nuclear Physics 25, 447 (1961).
  7. E. P. Wigner, Random matrices in physics, SIAM Review 9, 1 (1967).
  8. O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Physical Review Letters 52, 1 (1984).
  9. M. V. Berry and M. Tabor, Level clustering in the regular spectrum, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 356, 375 (1977).
  10. M. C. Gutzwiller, Periodic Orbits and Classical Quantization Conditions, Journal of Mathematical Physics 12, 343 (2003), https://pubs.aip.org/aip/jmp/article-pdf/12/3/343/10951718/343_1_online.pdf .
  11. J. Wilkie and P. Brumer, Time-dependent manifestations of quantum chaos, Physical Review Letters 67, 1185 (1991).
  12. Y. Alhassid and R. D. Levine, Spectral autocorrelation function in the statistical theory of energy levels, Physical Review A 46, 4650 (1992).
  13. J.-Z. Ma, Correlation Hole of Survival Probability and Level Statistics, Journal of the Physical Society of Japan 64, 4059 (1995).
  14. A. del Campo, J. Molina-Vilaplana, and J. Sonner, Scrambling the spectral form factor: Unitarity constraints and exact results, Physical Review D 95, 126008 (2017).
  15. R. E. Prange, The Spectral Form Factor Is Not Self-Averaging, Physical Review Letters 78, 2280 (1997).
  16. M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localization in the heisenberg x x z magnet in a random field, Physical Review B 77, 064426 (2008).
  17. A. Pal and D. A. Huse, Many-body localization phase transition, Physical Review B 82, 174411 (2010).
  18. M. Serbyn and J. E. Moore, Spectral statistics across the many-body localization transition, Physical Review B 93, 041424 (2016).
  19. C. L. Bertrand and A. M. García-García, Anomalous thouless energy and critical statistics on the metallic side of the many-body localization transition, Physical Review B 94, 144201 (2016).
  20. P. Sierant and J. Zakrzewski, Level statistics across the many-body localization transition, Physical Review B 99, 104205 (2019).
  21. P. Sierant and J. Zakrzewski, Model of level statistics for disordered interacting quantum many-body systems, Physical Review B 101, 104201 (2020).
  22. M. Schiulaz, E. J. Torres-Herrera, and L. F. Santos, Thouless and relaxation time scales in many-body quantum systems, Physical Review B 99, 174313 (2019).
  23. H. Bethe, Zur theorie der metalle: I. eigenwerte und eigenfunktionen der linearen atomkette, Zeitschrift für Physik 71, 205 (1931).
  24. W.-J. Rao, Higher-order level spacings in random matrix theory based on Wigner’s conjecture, Physical Review B 102, 054202 (2020).
  25. D. Engel, J. Main, and G. Wunner, Higher-order energy level spacing distributions in the transition region between regularity and chaos, Journal of Physics A: Mathematical and General 31, 6965 (1998).
  26. A. Y. Abul-Magd and M. H. Simbel, Wigner surmise for high-order level spacing distributions of chaotic systems, Physical Review E 60, 5371 (1999).
  27. S. H. Tekur, U. T. Bhosale, and M. S. Santhanam, Higher-order spacing ratios in random matrix theory and complex quantum systems, Physical Review B 98, 104305 (2018).
  28. J. Sakhr and J. M. Nieminen, Wigner surmises and the two-dimensional homogeneous Poisson point process, Physical Review E 73, 047202 (2006).
  29. P. J. Forrester, A Random Matrix Decimation Procedure Relating β𝛽\betaitalic_β = 2/(r + 1) to β𝛽\betaitalic_β = 2(r + 1), Communications in Mathematical Physics 285, 653 (2009).
  30. J. French, P. Mello, and A. Pandey, Statistical properties of many-particle spectra. ii. two-point correlations and fluctuations, Annals of Physics 113, 277 (1978).
  31. Where we are assuming no exact degeneracies in the spectrum.
  32. P. B. Kahn and C. E. Porter, Statistical fluctuations of energy levels: The unitary ensemble, Nuclear Physics 48, 385 (1963).
  33. M. V. Berry and P. Shukla, Geometric phase curvature for random states, Journal of Physics A: Mathematical and Theoretical 51, 475101 (2018).
  34. A. Y. Abul-Magd and M. H. Simbel, High-order level-spacing distributions for mixed systems, Physical Review E 62, 4792 (2000).
  35. P. J. Forrester, Log-Gases and Random Matrices (LMS-34), in Log-Gases and Random Matrices (LMS-34) (Princeton University Press, 2010).
  36. F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I, Journal of Mathematical Physics 3, 140 (1962).
  37. We expect such a behavior for an unfolded spectrum (Ei+k−Eisubscript𝐸𝑖𝑘subscript𝐸𝑖E_{i+k}-E_{i}italic_E start_POSTSUBSCRIPT italic_i + italic_k end_POSTSUBSCRIPT - italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT does not depend on the local density of states ρ⁢(Ei)𝜌subscript𝐸𝑖\rho(E_{i})italic_ρ ( italic_E start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )) which shows no mixed behavior, i.e. the spectral statistics does not change within the energy window.
  38. S. Mirevski and L. Boyadjiev, On some fractional generalizations of the laguerre polynomials and the kummer function, Computers & Mathematics with Applications 59, 1271 (2010).
  39. See Digital Library of Mathematical Functions https://dlmf.nist.gov/18.15##iv.
  40. Note that we are not expanding terms involving time in α𝛼\alphaitalic_α.
  41. Note that we will use “k𝑘kitalic_kth dip time” for the minimum of the knSFF and “dip time” when referring to the full or partial SFF.
  42. M. Winer, S.-K. Jian, and B. Swingle, An exponential ramp in the quadratic Sachdev-Ye-Kitaev model, Physical Review Letters 125, 250602 (2020).
  43. Y. Liao, A. Vikram, and V. Galitski, Many-body level statistics of single-particle quantum chaos, Physical Review Letters 125, 250601 (2020).
  44. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press on Demand, 2002).
  45. A. Rivas and S. F. Huelga, Open quantum systems, Vol. 10 (Springer, 2012).
  46. P. Martinez-Azcona and A. Chenu, Analyticity constraints bound the decay of the spectral form factor, Quantum 6, 852 (2022).
  47. L. Sá, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos, Physical Review X 10, 021019 (2020).
  48. Further properties of Toeplitz matrices can be found in https://mathworld.wolfram.com/ToeplitzMatrix.html.
  49. T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299, 189 (1998).
  50. This result can be found in https://robertsweeneyblanco.github.io/Computational_Random_Matrix_Theory/Eigenvalues/Wigner_Surmise.html.
  51. A. A. Abul-Magd and A. Y. Abul-Magd, Unfolding of the spectrum for chaotic and mixed systems, Physica A: Statistical Mechanics and its Applications 396, 185 (2014).
Citations (3)

Summary

We haven't generated a summary for this paper yet.