Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Preferences Into Treatment Assignment Problems (2311.08963v1)

Published 15 Nov 2023 in econ.EM

Abstract: This study investigates the problem of individualizing treatment allocations using stated preferences for treatments. If individuals know in advance how the assignment will be individualized based on their stated preferences, they may state false preferences. We derive an individualized treatment rule (ITR) that maximizes welfare when individuals strategically state their preferences. We also show that the optimal ITR is strategy-proof, that is, individuals do not have a strong incentive to lie even if they know the optimal ITR a priori. Constructing the optimal ITR requires information on the distribution of true preferences and the average treatment effect conditioned on true preferences. In practice, the information must be identified and estimated from the data. As true preferences are hidden information, the identification is not straightforward. We discuss two experimental designs that allow the identification: strictly strategy-proof randomized controlled trials and doubly randomized preference trials. Under the presumption that data comes from one of these experiments, we develop data-dependent procedures for determining ITR, that is, statistical treatment rules (STRs). The maximum regret of the proposed STRs converges to zero at a rate of the square root of the sample size. An empirical application demonstrates our proposed STRs.

Summary

We haven't generated a summary for this paper yet.