Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ground state solutions for a non-local type problem in fractional Orlicz Sobolev spaces (2311.08905v1)

Published 15 Nov 2023 in math.AP

Abstract: In this paper, we study the following nonlocal problem in fractional Orlicz Sobolev spaces \begin{eqnarray*} (-\Delta_{\Phi}){s}u+V(x)a(|u|)u=f(x,u),\quad x\in\mathbb{R}N, \end{eqnarray*} where $(-\Delta_{\Phi}){s}(s\in(0, 1))$ denotes the non-local and maybe non-homogeneous operator, the so-called fractional $\Phi$-Laplacian. Without assuming the Ambrosetti-Rabinowitz type and the Nehari type conditions on the nonlinearity, we obtain the existence of ground state solutions for the above problem in periodic case. The proof is based on a variant version of the mountain pass theorem and a Lions' type result for fractional Orlicz Sobolev spaces.

Summary

We haven't generated a summary for this paper yet.