Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An MRL-Based Design Solution for RIS-Assisted MU-MIMO Wireless System under Time-Varying Channels (2311.08840v1)

Published 15 Nov 2023 in eess.SY and cs.SY

Abstract: Utilizing Deep Reinforcement Learning (DRL) for Reconfigurable Intelligent Surface (RIS) assisted wireless communication has been extensively researched. However, existing DRL methods either act as a simple optimizer or only solve problems with concurrent Channel State Information (CSI) represented in the training data set. Consequently, solutions for RIS-assisted wireless communication systems under time-varying environments are relatively unexplored. However, communication problems should be considered with realistic assumptions; for instance, in scenarios where the channel is time-varying, the policy obtained by reinforcement learning should be applicable for situations where CSI is not well represented in the training data set. In this paper, we apply Meta-Reinforcement Learning (MRL) to the joint optimization problem of active beamforming at the Base Station (BS) and phase shift at the RIS, motivated by MRL's ability to extend the DRL concept of solving one Markov Decision Problem (MDP) to multiple MDPs. We provide simulation results to compare the average sum rate of the proposed approach with those of selected forerunners in the literature. Our approach improves the sum rate by more than 60% under time-varying CSI assumption while maintaining the advantages of typical DRL-based solutions. Our study's results emphasize the possibility of utilizing MRL-based designs in RIS-assisted wireless communication systems while considering realistic environment assumptions.

Summary

We haven't generated a summary for this paper yet.