Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Density Steering of Gaussian Mixture Models for Discrete-Time Linear Systems (2311.08500v3)

Published 14 Nov 2023 in eess.SY and cs.SY

Abstract: In this paper, we study the finite-horizon optimal density steering problem for discrete-time stochastic linear dynamical systems. Specifically, we focus on steering probability densities represented as Gaussian mixture models which are known to give good approximations for general smooth probability density functions. We then revisit the covariance steering problem for Gaussian distributions and derive its optimal control policy. Subsequently, we propose a randomized policy to enhance the numerical tractability of the problem and demonstrate that under this policy the state distribution remains a Gaussian mixture. By leveraging these results, we reduce the Gaussian mixture steering problem to a linear program. We also discuss the problem of steering general distributions using Gaussian mixture approximations. Finally, we present results of non-trivial numerical experiments and demonstrate that our approach can be applied to general distribution steering problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal transport over a linear dynamical system,” IEEE Trans. Automat. Contr., vol. 62, no. 5, pp. 2137–2152, 2016.
  2. CRC press, 2017.
  3. U. Eren and B. Açıkmeşe, “Velocity field generation for density control of swarms using heat equation and smoothing kernels,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 9405–9411, 2017.
  4. T. Zheng, Q. Han, and H. Lin, “Backstepping mean-field density control for large-scale heterogeneous nonlinear stochastic systems,” in Proc. IEEE Am. Control Conf., pp. 4832–4837, 2022.
  5. N. Demir, U. Eren, and B. Açıkmeşe, “Decentralized probabilistic density control of autonomous swarms with safety constraints,” Auton. Robot., vol. 39, pp. 537–554, 2015.
  6. F. Djeumou, Z. Xu, M. Cubuktepe, and U. Topcu, “Probabilistic control of heterogeneous swarms subject to graph temporal logic specifications: A decentralized and scalable approach,” IEEE Trans. Automat. Contr., vol. 68, no. 4, pp. 2245–2260, 2022.
  7. M. H. de Badyn, E. Miehling, D. Janak, B. Açıkmeşe, M. Mesbahi, T. Başar, J. Lygeros, and R. S. Smith, “Discrete-time linear-quadratic regulation via optimal transport,” in Proc. IEEE Conf. Decis. Control, pp. 3060–3065, 2021.
  8. K. Ito and K. Kashima, “Entropic model predictive optimal transport over dynamical systems,” Automatica, vol. 152, p. 110980, 2023.
  9. V. Krishnan and S. Martínez, “Distributed optimal transport for the deployment of swarms,” in Proc. IEEE Conf. Decis. Control, pp. 4583–4588, 2018.
  10. Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear stochastic system to a final probability distribution, part i,” IEEE Trans. Automat. Contr., vol. 61, no. 5, pp. 1158–1169, 2015.
  11. M. Goldshtein and P. Tsiotras, “Finite-horizon covariance control of linear time-varying systems,” in Proc. IEEE Conf. Decis. Control, pp. 3606–3611, 2017.
  12. I. M. Balci and E. Bakolas, “Exact SDP formulation for discrete-time covariance steering with Wasserstein terminal cost,” arXiv preprint arXiv:2205.10740, 2022.
  13. A. Terpin, N. Lanzetti, and F. Dörfler, “Dynamic programming in probability spaces via optimal transport,” arXiv preprint arXiv:2302.13550, 2023.
  14. K. Hoshino and K. Sakurama, “Probability distribution control of finite-state markov chains with Wasserstein costs and application to operation of car-sharing services,” in Proc. IEEE Conf. Decis. Control, pp. 6634–6639, 2021.
  15. K. F. Caluya and A. Halder, “Wasserstein proximal algorithms for the schrödinger bridge problem: Density control with nonlinear drift,” IEEE Trans. Automat. Contr., vol. 67, no. 3, pp. 1163–1178, 2021.
  16. V. Sivaramakrishnan, J. Pilipovsky, M. Oishi, and P. Tsiotras, “Distribution steering for discrete-time linear systems with general disturbances using characteristic functions,” in Proc. IEEE Am. Control Conf., pp. 4183–4190, 2022.
  17. G. Wu and A. Lindquist, “General distribution steering: A sub-optimal solution by convex optimization,” arXiv preprint arXiv:2301.06227, 2023.
  18. K. Elamvazhuthi and S. Berman, “Optimal control of stochastic coverage strategies for robotic swarms,” in IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1822–1829, IEEE, 2015.
  19. K. Bakshi, E. A. Theodorou, and P. Grover, “Stabilizing optimal density control of nonlinear agents with multiplicative noise,” in Proc. IEEE Conf. Decis. Control, pp. 3054–3059, 2020.
  20. A. D. Saravanos, Y. Li, and E. A. Theodorou, “Distributed hierarchical distribution control for very-large-scale clustered multi-agent systems,” arXiv preprint arXiv:2305.18718, 2023.
  21. A. Z. Abdulghafoor and E. Bakolas, “Multi-agent distributed optimal control for tracking large-scale multi-target systems in dynamic environments,” IEEE Trans. Cybern., 2023.
  22. P. Zhu, C. Liu, and S. Ferrari, “Adaptive online distributed optimal control of very-large-scale robotic systems,” IEEE Trans. Control. Netw. Syst., vol. 8, no. 2, pp. 678–689, 2021.
  23. Cambridge University Press, 2004.
  24. L. Mirsky, “A trace inequality of john von neumann,” Monatshefte für mathematik, vol. 79, no. 4, pp. 303–306, 1975.
  25. T. Moon, “The expectation-maximization algorithm,” IEEE Signal Process Mag, vol. 13, no. 6, pp. 47–60, 1996.
  26. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  27. K. Kampa, E. Hasanbelliu, and J. C. Principe, “Closed-form cauchy-schwarz pdf divergence for mixture of gaussians,” in Proc. Int. Jt. Conf. Neural Netw., pp. 2578–2585, 2011.
  28. Y. Chen, T. T. Georgiou, and A. Tannenbaum, “Optimal transport for Gaussian mixture models,” IEEE Access, vol. 7, pp. 6269–6278, 2018.
Citations (3)

Summary

We haven't generated a summary for this paper yet.