Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Content-Adaptive Variable Framerate Encoding Scheme for Green Live Streaming (2311.08074v1)

Published 14 Nov 2023 in cs.MM

Abstract: Adaptive live video streaming applications use a fixed predefined configuration for the bitrate ladder with constant framerate and encoding presets in a session. However, selecting optimized framerates and presets for every bitrate ladder representation can enhance perceptual quality, improve computational resource allocation, and thus, the streaming energy efficiency. In particular, low framerates for low-bitrate representations reduce compression artifacts and decrease encoding energy consumption. In addition, an optimized preset may lead to improved compression efficiency. To this light, this paper proposes a Content-adaptive Variable Framerate (CVFR) encoding scheme, which offers two modes of operation: ecological (ECO) and high-quality (HQ). CVFR-ECO optimizes for the highest encoding energy savings by predicting the optimized framerate for each representation in the bitrate ladder. CVFR-HQ takes it further by predicting each representation's optimized framerate-encoding preset pair using low-complexity discrete cosine transform energy-based spatial and temporal features for compression efficiency and sustainable storage. We demonstrate the advantage of CVFR using the x264 open-source video encoder. The results show that CVFR-ECO yields an average PSNR and VMAF increase of 0.02 dB and 2.50 points, respectively, for the same bitrate, compared to the fastest preset highest framerate encoding. CVFR-ECO also yields an average encoding and storage energy consumption reduction of 34.54% and 76.24%, considering a just noticeable difference (JND) of six VMAF points. In comparison, CVFR-HQ yields an average increase in PSNR and VMAF of 2.43 dB and 10.14 points, respectively, for the same bitrate. Finally, CVFR-HQ resulted in an average reduction in storage energy consumption of 83.18%, considering a JND of six VMAF points.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Vignesh V Menon (20 papers)
  2. Samira Afzal (7 papers)
  3. Klaus Schoeffmann (26 papers)
  4. Radu Prodan (20 papers)
  5. Christian Timmerer (35 papers)
  6. Prajit T Rajendran (14 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.