Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ELF: An End-to-end Local and Global Multimodal Fusion Framework for Glaucoma Grading (2311.08032v1)

Published 14 Nov 2023 in eess.IV and cs.CV

Abstract: Glaucoma is a chronic neurodegenerative condition that can lead to blindness. Early detection and curing are very important in stopping the disease from getting worse for glaucoma patients. The 2D fundus images and optical coherence tomography(OCT) are useful for ophthalmologists in diagnosing glaucoma. There are many methods based on the fundus images or 3D OCT volumes; however, the mining for multi-modality, including both fundus images and data, is less studied. In this work, we propose an end-to-end local and global multi-modal fusion framework for glaucoma grading, named ELF for short. ELF can fully utilize the complementary information between fundus and OCT. In addition, unlike previous methods that concatenate the multi-modal features together, which lack exploring the mutual information between different modalities, ELF can take advantage of local-wise and global-wise mutual information. The extensive experiment conducted on the multi-modal glaucoma grading GAMMA dataset can prove the effiectness of ELF when compared with other state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.