Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EPPA numbers of graphs (2311.07995v3)

Published 14 Nov 2023 in math.CO and cs.DM

Abstract: If $G$ is a graph, $A$ and $B$ its induced subgraphs, and $f\colon A\to B$ an isomorphism, we say that $f$ is a \emph{partial automorphism} of $G$. In 1992, Hrushovski proved that graphs have the \emph{extension property for partial automorphisms} (\emph{EPPA}, also called the \emph{Hrushovski property}), that is, for every finite graph $G$ there is a finite graph $H$, an \emph{EPPA-witness} for $G$, such that $G$ is an induced subgraph of $H$ and every partial automorphism of $G$ extends to an automorphism of $H$. The EPPA number of a graph $G$, denoted by $\mathop{\mathrm{eppa}}\nolimits(G)$, is the smallest number of vertices of an EPPA-witness for $G$, and we put $\mathop{\mathrm{eppa}}\nolimits(n) = \max{\mathop{\mathrm{eppa}}\nolimits(G) : \lvert G\rvert = n}$. In this note we review the state of the area, prove several lower bounds (in particular, we show that $\mathop{\mathrm{eppa}}\nolimits(n)\geq \frac{2n}{\sqrt{n}}$, thereby identifying the correct base of the exponential) and pose many open questions. We also briefly discuss EPPA numbers of hypergraphs, directed graphs, and $K_k$-free graphs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Ramsey expansions of metrically homogeneous graphs. Accepted to European Journal of Combinatorics, arXiv:1707.02612, 2017.
  2. H. Andréka and I. Németi. Extending partial isomorphisms, a small construction. private communication, 2019.
  3. The Probabilistic Method. Wiley, 2004.
  4. Mikhail Beliayeu. The Extension Property for Partial Automorphisms (EPPA) of Reducts of Relational Structures. Bachelor’s thesis, Charles University, 2023.
  5. A Ramsey class for Steiner systems. Journal of Combinatorial Theory, Series A, 154:323–349, 2018.
  6. Janusz Buczak. Finite Group Theory. PhD thesis, Oxford University, 1980.
  7. Notes on eppa witnesses. Unpublished note, 2020.
  8. Peter J. Cameron. 6-transitive graphs. Journal of Combinatorial Theory, Series B, 28(2):168–179, 1980.
  9. Recent developments in graph Ramsey theory. In Artur Czumaj, Agelos Georgakopoulos, Daniel Král, Vadim Lozin, and Oleg Pikhurko, editors, Surveys in Combinatorics 2015, London Mathematical Society Lecture Note Series, page 49–118. Cambridge University Press, 2015.
  10. Gregory Cherlin. The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N𝑁Nitalic_N-tournaments. Number 621 in Memoirs of the American Mathematical Society. American Mathematical Society, 1998.
  11. Gregory Cherlin. Homogeneous Ordered Graphs, Metrically Homogeneous Graphs, and Beyond, volume 1 of Lecture Notes in Logic. Cambridge University Press, 2022.
  12. Rank three permutation groups with rank three subconstituents. Journal of Combinatorial Theory, Series B, 39(1):1–16, 1985.
  13. Gabriel Conant. Extending partial isometries of generalized metric spaces. Fundamenta Mathematicae, 244:1–16, 2019.
  14. Universal graphs with forbidden subgraphs and algebraic closure. Advances in Applied Mathematics, 22(4):454–491, 1999.
  15. EPPA for two-graphs and antipodal metric spaces. Proceedings of the American Mathematical Society, 148:1901–1915, 2020.
  16. Ramsey properties and extending partial automorphisms for classes of finite structures. Fundamenta Mathematicae, 253:121–153, 2021.
  17. A. M. Frieze. On the independence number of random graphs. Discrete Mathematics, 81(2):171–175, 1990.
  18. Anthony Gardiner. Homogeneous graphs. Journal of Combinatorial Theory, Series B, 20(1):94–102, 1976.
  19. Symmetrized Induced Ramsey Theory. Graphs and Combinatorics, 27(6):851–864, Nov 2011.
  20. Algebraic Graph Theory, volume 207 of Graduate Texts in Mathematics. volume 207 of Graduate Texts in Mathematics. Springer, 2001.
  21. Bernhard Herwig. Extending partial isomorphisms on finite structures. Combinatorica, 15(3):365–371, 1995.
  22. Bernhard Herwig. Extending partial isomorphisms for the small index property of many ω𝜔\omegaitalic_ω-categorical structures. Israel Journal of Mathematics, 107(1):93–123, 1998.
  23. The small index property for ω𝜔\omegaitalic_ω-stable ω𝜔\omegaitalic_ω-categorical structures and for the random graph. Journal of the London Mathematical Society, 2(2):204–218, 1993.
  24. Extending partial automorphisms of n-partite tournaments. Acta Mathematica Universitatis Comenianae, 88(3):807–811, 2019. Extended abstract for Eurocomb 2021.
  25. Extension property for partial automorphisms of the n𝑛nitalic_n-partite and semi-generic tournaments. To appear, 2023.
  26. Semigroup-valued metric spaces: Ramsey expansions and EPPA. In preparation, 2018.
  27. A combinatorial proof of the extension property for partial isometries. Commentationes Mathematicae Universitatis Carolinae, 60(1):39–47, 2019.
  28. All those EPPA classes (strengthenings of the Herwig–Lascar theorem). Transactions of the American Mathematical Society, 375(11):7601–7667, 2022.
  29. Extending partial automorphisms and the profinite topology on free groups. Transactions of the American Mathematical Society, 352(5):1985–2021, 2000.
  30. Finite conformal hypergraph covers and Gaifman cliques in finite structures. Bulletin of Symbolic Logic, 9(03):387–405, 2003.
  31. The Hrushovski property for hypertournaments and profinite topologies. Journal of the London Mathematical Society, 100(3):757–774, 2019.
  32. Ehud Hrushovski. Extending partial isomorphisms of graphs. Combinatorica, 12(4):411–416, 1992.
  33. Martin Kneser. Aufgabe 360. Jahresbericht der DMV, 58(2):27, 1955.
  34. Matěj Konečný. Semigroup-valued metric spaces. Master’s thesis, Charles University, 2019. arXiv:1810.08963.
  35. Matěj Konečný. Model theory and extremal combinatorics. PhD thesis, Charles University, 2023.
  36. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric and Functional Analysis, 15(1):106–189, 2005.
  37. Turbulence, amalgamation, and generic automorphisms of homogeneous structures. Proceedings of the London Mathematical Society, 94(2):302–350, 2007.
  38. Alistair H. Lachlan. Countable homogeneous tournaments. Transactions of the American Mathematical Society, 284(2):431–461, 1984.
  39. Alistair H. Lachlan. On countable stable structures which are homogeneous for a finite relational language. Israel Journal of Mathematics, 49(1-3):69–153, 1984.
  40. Countable ultrahomogeneous undirected graphs. Transactions of the American Mathematical Society, pages 51–94, 1980.
  41. Peter M. Neumann. The lawlessness of groups of finitary permutations. Archiv der Mathematik, 26(1):561–566, Dec 1975.
  42. Martin Otto. Amalgamation and symmetry: From local to global consistency in the finite. arXiv:1709.00031, 2020.
  43. Sławomir Solecki. Extending partial isometries. Israel Journal of Mathematics, 150(1):315–331, 2005.
  44. Coherent extension of partial automorphisms, free amalgamation, and automorphism groups. The Journal of Symbolic Logic, pages 199–223, 2019.
  45. Simon Thomas. Reducts of the random graph. The Journal of symbolic logic, 56(01):176–181, 1991.
  46. Anatoly M. Vershik. Globalization of the partial isometries of metric spaces and local approximation of the group of isometries of Urysohn space. Topology and its Applications, 155(14):1618–1626, 2008.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com