Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$q$-Analogue of the degree zero part of a rational Cherednik algebra (2311.07543v2)

Published 13 Nov 2023 in math.QA, math-ph, math.MP, and nlin.SI

Abstract: Inside the double affine Hecke algebra of type $GL_n$, which depends on two parameters $q$ and $\tau$, we define a subalgebra $\mathbb{H}{\mathfrak{gl}_n}$ that may be thought of as a $q$-analogue of the degree zero part of the corresponding rational Cherednik algebra. We prove that the algebra $\mathbb{H}{\mathfrak{gl}_n}$ is a flat $\tau$-deformation of the crossed product of the group algebra of the symmetric group with the image of the Drinfeld-Jimbo quantum group $U_q(\mathfrak{gl}_n)$ under the $q$-oscillator (Jordan-Schwinger) representation. We find all the defining relations and an explicit PBW basis for the algebra $\mathbb{H}{\mathfrak{gl}_n}$. We describe its centre and establish a double centraliser property. As an application, we also obtain new integrable generalisations of Hamiltonians introduced by van Diejen.

Summary

We haven't generated a summary for this paper yet.