Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slow Passage through a Saddle-Node Bifurcation in Discrete Dynamical Systems (2311.07242v1)

Published 13 Nov 2023 in math.NA, cs.NA, and nlin.CD

Abstract: We study a discrete non-autonomous system whose autonomous counterpart (with the frozen bifurcation parameter) admits a saddle-node bifurcation, and in which the bifurcation parameter slowly changes in time and is characterized by a sweep rate constant $\epsilon$. The discrete system is more appropriate for modeling realistic systems since only time series data is available. We show that in contrast to its autonomous counterpart, when the time mesh size $\Delta t$ is less than the order $O(\epsilon)$, there is a bifurcation delay as the bifurcation time-varying parameter is varied through the bifurcation point, and the delay is proportional to the two-thirds power of the sweep rate constant $\epsilon$. This bifurcation delay is significant in various realistic systems since it allows one to take necessary action promptly before a sudden collapse or shift to different states. On the other hand, when the time mesh size $\Delta t$ is larger than the order $o(\epsilon)$, the dynamical behavior of the solution is dramatically changed before the bifurcation point. This behavior is not observed in the autonomous counterpart. Therefore, the dynamical behavior of the system strongly depends on the time mesh size. Finally. due to the very discrete feature of the system, there are no efficient tools for the analytical study of the system. Our approach is elementary and analytical.

Summary

We haven't generated a summary for this paper yet.