Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MANSY: Generalizing Neural Adaptive Immersive Video Streaming With Ensemble and Representation Learning (2311.06812v2)

Published 12 Nov 2023 in cs.NI

Abstract: The popularity of immersive videos has prompted extensive research into neural adaptive tile-based streaming to optimize video transmission over networks with limited bandwidth. However, the diversity of users' viewing patterns and Quality of Experience (QoE) preferences has not been fully addressed yet by existing neural adaptive approaches for viewport prediction and bitrate selection. Their performance can significantly deteriorate when users' actual viewing patterns and QoE preferences differ considerably from those observed during the training phase, resulting in poor generalization. In this paper, we propose MANSY, a novel streaming system that embraces user diversity to improve generalization. Specifically, to accommodate users' diverse viewing patterns, we design a Transformer-based viewport prediction model with an efficient multi-viewport trajectory input output architecture based on implicit ensemble learning. Besides, we for the first time combine the advanced representation learning and deep reinforcement learning to train the bitrate selection model to maximize diverse QoE objectives, enabling the model to generalize across users with diverse preferences. Extensive experiments demonstrate that MANSY outperforms state-of-the-art approaches in viewport prediction accuracy and QoE improvement on both trained and unseen viewing patterns and QoE preferences, achieving better generalization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Duo Wu (7 papers)
  2. Panlong Wu (6 papers)
  3. Miao Zhang (147 papers)
  4. Fangxin Wang (28 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.