Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Frequency Features of Cancer Gene Co-Expression Networks (2311.06747v3)

Published 12 Nov 2023 in q-bio.MN and physics.data-an

Abstract: Complex gene interactions play a significant role in cancer progression, driving cellular behaviors that contribute to tumor growth, invasion, and metastasis. Gene co-expression networks model the functional connectivity between genes under various biological conditions. Understanding the system-level evolution of these networks in cancer is critical for elucidating disease mechanisms and informing the development of targeted therapies. While previous studies have primarily focused on structural differences between cancer and normal cell co-expression networks, this study applies graph frequency analysis to cancer transcriptomic signals defined on gene co-expression networks, highlighting the graph spectral characteristics of cancer systems. Using a range of graph frequency filters, we showed that cancer cells display distinctive patterns in the graph frequency content of their gene transcriptomic signals, effectively distinguishing between cancer types and stages. The transformation of the original gene feature space into the graph spectral space captured more intricate cancer properties, as validated by significantly higher F-statistic scores for graph frequency-filtered gene features compared to those in the original space.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com