Optimal compression of constrained quantum time evolution (2311.06347v3)
Abstract: The time evolution of quantum many-body systems is one of the most promising applications for near-term quantum computers. However, the utility of current quantum devices is strongly hampered by the proliferation of hardware errors. The minimization of the circuit depth for a given quantum algorithm is therefore highly desirable, since shallow circuits generally are less vulnerable to decoherence. Recently, it was shown that variational circuits are a promising approach to outperform current state-of-the-art methods such as Trotter decomposition, although the optimal choice of parameters is a computationally demanding task. In this work, we demonstrate a simplification of the variational optimization of circuits implementing the time evolution operator of local Hamiltonians by directly encoding constraints of the physical system under consideration. We study the expressibility of such constrained variational circuits for different models and constraints. Our results show that the encoding of constraints allows a reduction of optimization cost by more than one order of magnitude and scalability to arbitrary large system sizes, without loosing accuracy in most systems. Furthermore, we discuss the exceptions in locally-constrained systems and provide an explanation by means of an restricted lightcone width after incorporating the constraints into the circuits.
- P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal on Computing 26, 1484–1509 (1997).
- A. Y. Kitaev, “Quantum measurements and the abelian stabilizer problem,” (1995), arXiv:quant-ph/9511026 .
- S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini, and et al., “Quantum optimization of maximum independent set using rydberg atom arrays,” (2022), arXiv:2202.09372 .
- Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R. McClean, “Quantum advantage in learning from experiments,” Science 376, 1182–1186 (2022).
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
- Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579–584 (2017).
- Christian Gross and Immanuel Bloch, “Quantum simulations with ultracold atoms in optical lattices,” Science 357, 995–1001 (2017).
- Google AI Quantum, Collaborators, Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O’Brien, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J. Sung, Marco Szalay, Tyler Y. Takeshita, Amit Vainsencher, Theodore White, Nathan Wiebe, Z. Jamie Yao, Ping Yeh, and Adam Zalcman, “Hartree-fock on a superconducting qubit quantum computer,” Science 369, 1084–1089 (2020).
- P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Schymik, V. Lienhard, and et al., “Quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms,” Nature 595, 233–238 (2021).
- Sepehr Ebadi, Tout T Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, et al., “Quantum phases of matter on a 256-atom programmable quantum simulator,” Nature 595, 227–232 (2021).
- Philipp Frey and Stephan Rachel, “Realization of a discrete time crystal on 57 qubits of a quantum computer,” Science advances 8, eabm7652 (2022).
- K. J. Satzinger, Y.-J Liu, A. Smith, C. Knapp, M. Newman, C. Jones, Z. Chen, C. Quintana, X. Mi, A. Dunsworth, C. Gidney, I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, J. Basso, A. Bengtsson, A. Bilmes, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, D. Eppens, C. Erickson, L. Faoro, E. Farhi, A. G. Fowler, B. Foxen, M. Giustina, A. Greene, J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, S. Hong, T. Huang, W. J. Huggins, L. B. Ioffe, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, T. Khattar, S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, A. Locharla, E. Lucero, O. Martin, J. R. McClean, M. McEwen, K. C. Miao, M. Mohseni, S. Montazeri, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, T. E. O’Brien, A. Opremcak, B. Pató , A. Petukhov, N. C. Rubin, D. Sank, V. Shvarts, D. Strain, M. Szalay, B. Villalonga, T. C. White, Z. Yao, P. Yeh, J. Yoo, A. Zalcman, H. Neven, S. Boixo, A. Megrant, Y. Chen, J. Kelly, V. Smelyanskiy, A. Kitaev, M. Knap, F. Pollmann, and P. Roushan, “Realizing topologically ordered states on a quantum processor,” Science 374, 1237–1241 (2021).
- Adam Smith, M. S. Kim, Frank Pollmann, and Johannes Knolle, “Simulating quantum many-body dynamics on a current digital quantum computer,” npj Quantum Information 5 (2019).
- Bing Yang, Hui Sun, Robert Ott, Han-Yi Wang, Torsten V. Zache, Jad C. Halimeh, Zhen-Sheng Yuan, Philipp Hauke, and Jian-Wei Pan, “Observation of gauge invariance in a 71-site bose–hubbard quantum simulator,” Nature 587, 392–396 (2020).
- Michael Meth, Jan F. Haase, Jinglei Zhang, Claire Edmunds, Lukas Postler, Alex Steiner, Andrew J. Jena, Luca Dellantonio, Rainer Blatt, Peter Zoller, Thomas Monz, Philipp Schindler, Christine Muschik, and Martin Ringbauer, “Simulating 2d lattice gauge theories on a qudit quantum computer,” (2023), arXiv:2310.12110 .
- Google Quantum AI and Collaborators, “Measurement-induced entanglement and teleportation on a noisy quantum processor,” Nature 622, 481–486 (2023).
- Crystal Noel, Pradeep Niroula, Daiwei Zhu, Andrew Risinger, Laird Egan, Debopriyo Biswas, Marko Cetina, Alexey V Gorshkov, Michael J Gullans, David A Huse, et al., “Measurement-induced quantum phases realized in a trapped-ion quantum computer,” Nature Physics 18, 760–764 (2022).
- Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, et al., “A quantum processor based on coherent transport of entangled atom arrays,” Nature 604, 451–456 (2022).
- S. A. Moses, C. H. Baldwin, M. S. Allman, R. Ancona, L. Ascarrunz, C. Barnes, J. Bartolotta, B. Bjork, P. Blanchard, M. Bohn, J. G. Bohnet, N. C. Brown, N. Q. Burdick, W. C. Burton, S. L. Campbell, J. P. Campora III au2, C. Carron, J. Chambers, J. W. Chan, Y. H. Chen, A. Chernoguzov, E. Chertkov, J. Colina, J. P. Curtis, R. Daniel, M. DeCross, D. Deen, C. Delaney, J. M. Dreiling, C. T. Ertsgaard, J. Esposito, B. Estey, M. Fabrikant, C. Figgatt, C. Foltz, M. Foss-Feig, D. Francois, J. P. Gaebler, T. M. Gatterman, C. N. Gilbreth, J. Giles, E. Glynn, A. Hall, A. M. Hankin, A. Hansen, D. Hayes, B. Higashi, I. M. Hoffman, B. Horning, J. J. Hout, R. Jacobs, J. Johansen, L. Jones, J. Karcz, T. Klein, P. Lauria, P. Lee, D. Liefer, C. Lytle, S. T. Lu, D. Lucchetti, A. Malm, M. Matheny, B. Mathewson, K. Mayer, D. B. Miller, M. Mills, B. Neyenhuis, L. Nugent, S. Olson, J. Parks, G. N. Price, Z. Price, M. Pugh, A. Ransford, A. P. Reed, C. Roman, M. Rowe, C. Ryan-Anderson, S. Sanders, J. Sedlacek, P. Shevchuk, P. Siegfried, T. Skripka, B. Spaun, R. T. Sprenkle, R. P. Stutz, M. Swallows, R. I. Tobey, A. Tran, T. Tran, E. Vogt, C. Volin, J. Walker, A. M. Zolot, and J. M. Pino, “A race track trapped-ion quantum processor,” (2023), arXiv:2305.03828 .
- F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, and et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505–510 (2019).
- Yiqing Zhou, E. Miles Stoudenmire, and Xavier Waintal, “What limits the simulation of quantum computers?” Phys. Rev. X 10, 041038 (2020).
- Joseph Tindall, Matt Fishman, Miles Stoudenmire, and Dries Sels, “Efficient tensor network simulation of ibm’s eagle kicked ising experiment,” (2023), arXiv:2306.14887 .
- Sajant Anand, Kristan Temme, Abhinav Kandala, and Michael Zaletel, “Classical benchmarking of zero noise extrapolation beyond the exactly-verifiable regime,” (2023), arXiv:2306.17839 .
- Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout Van Den Berg, Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, et al., “Evidence for the utility of quantum computing before fault tolerance,” Nature 618, 500–505 (2023a).
- Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis, John Smolin, Ivano Tavernelli, and Kristan Temme, “Quantum optimization using variational algorithms on near-term quantum devices,” Quantum Science and Technology 3, 030503 (2018).
- Youngseok Kim, Christopher J. Wood, Theodore J. Yoder, Seth T. Merkel, Jay M. Gambetta, Kristan Temme, and Abhinav Kandala, “Scalable error mitigation for noisy quantum circuits produces competitive expectation values,” Nature Physics 19, 752–759 (2023b).
- K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quantum circuits,” Phys. Rev. Lett. 119, 180509 (2017).
- Y. Guo and S. Yang, “Quantum error mitigation via matrix product operators,” PRX Quantum 3, 040313 (2022).
- I. Chen, B. Burdick, Y. Yao, P. P. Orth, and T. Iadecola, “Error-mitigated simulation of quantum many-body scars on quantum computers with pulse-level control,” Phys. Rev. Res. 4, 043027 (2022).
- S. Filippov, B. Sokolov, M. A. C. Rossi, J. Malmi, E.-M. Borrelli, D. Cavalcanti, S. Maniscalco, and G. García-Pérez, “Matrix product channel: Variationally optimized quantum tensor network to mitigate noise and reduce errors for the variational quantum eigensolver,” (2022), arXiv:2212.10225 .
- J. Vovrosh, K. E. Khosla, S. Greenaway, C. Self, M. S. Kim, and J. Knolle, “Simple mitigation of global depolarizing errors in quantum simulations,” Phys. Rev. E 104, 035309 (2021).
- S. Endo, S. C. Benjamin, and Y. Li, “Practical quantum error mitigation for near-future applications,” Phys. Rev. X 8, 031027 (2018).
- E. van den Berg, Z. K. Minev, and K. Temme, “Model-free readout-error mitigation for quantum expectation values,” Physical Review A 105, 032620 (2022a).
- Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, “Quantum error mitigation,” (2022), arXiv:2210.00921 .
- Maurits S. J. Tepaske and David J. Luitz, “Compressed quantum error mitigation,” Physical Review B 107 (2023).
- Ying Li and Simon C. Benjamin, “Efficient variational quantum simulator incorporating active error minimization,” Phys. Rev. X 7, 021050 (2017).
- E. van den Berg, Z. K. Minev, A. Kandala, and K. Temme, “Probabilistic error cancellation with sparse pauli-lindblad models on noisy quantum processors,” (2022b), arXiv:2201.09866 .
- Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan, “Mitigating algorithmic errors in a hamiltonian simulation,” Phys. Rev. A 99, 012334 (2019).
- Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, “Error mitigation extends the computational reach of a noisy quantum processor,” Nature 567, 491–495 (2019).
- Sophus Lie, “Theorie der transformationsgruppen i,” Mathematische Annalen 16, 441–528 (1880).
- H. F Trotter, “On the product of semi-groups of operators,” Proceedings of the American Mathematical Society 10, 545–551 (1959).
- M. Suzuki, “Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems,” Communications in Mathematical Physics 51, 183 – 190 (1976).
- Masuo Suzuki, “Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations,” Physics Letters A 146, 319–323 (1990).
- A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, “Theory of trotter error with commutator scaling,” Physical Review X 11, 011020 (2021).
- Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alá n Aspuru-Guzik, Hartmut Neven, and Ryan Babbush, “Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization,” Quantum 4, 296 (2020).
- Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics 18, 023023 (2016).
- M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles, “Variational quantum algorithms,” Nature Reviews Physics 3, 625–644 (2021).
- Reza Haghshenas, Johnnie Gray, Andrew C. Potter, and Garnet Kin-Lic Chan, “Variational power of quantum circuit tensor networks,” Physical Review X 12 (2022).
- Kaoru Mizuta, Yuya O. Nakagawa, Kosuke Mitarai, and Keisuke Fujii, “Local variational quantum compilation of large-scale hamiltonian dynamics,” PRX Quantum 3, 040302 (2022).
- Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles, “Quantum-assisted quantum compiling,” Quantum 3, 140 (2019).
- Kunal Sharma, Sumeet Khatri, M Cerezo, and Patrick J Coles, “Noise resilience of variational quantum compiling,” New Journal of Physics 22, 043006 (2020).
- Benjamin Commeau, M. Cerezo, Zoë Holmes, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, “Variational hamiltonian diagonalization for dynamical quantum simulation,” (2020), arXiv:2009.02559 .
- N. F. Berthusen, T. V. Trevisan, T. Iadecola, and P. P. Orth, “Quantum dynamics simulations beyond the coherence time on nisq hardware by variational trotter compression,” (2021), arXiv:2112.12654 .
- Sheng-Hsuan Lin, Rohit Dilip, Andrew G. Green, Adam Smith, and Frank Pollmann, “Real- and imaginary-time evolution with compressed quantum circuits,” PRX Quantum 2 (2021).
- Marcello Benedetti, Mattia Fiorentini, and Michael Lubasch, “Hardware-efficient variational quantum algorithms for time evolution,” Phys. Rev. Res. 3, 033083 (2021).
- Stefano Barison, Filippo Vicentini, and Giuseppe Carleo, “An efficient quantum algorithm for the time evolution of parameterized circuits,” Quantum 5, 512 (2021).
- Tyson Jones and Simon C. Benjamin, “Robust quantum compilation and circuit optimisation via energy minimisation,” Quantum 6, 628 (2022).
- Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, “Variational quantum gate optimization,” (2018), arXiv:1810.12745 .
- Joe Gibbs, Kaitlin Gili, Zoë Holmes, Benjamin Commeau, Andrew Arrasmith, Lukasz Cincio, Patrick J. Coles, and Andrew Sornborger, “Long-time simulations for fixed input states on quantum hardware,” npj Quantum Information 8, 135 (2022).
- Kentaro Heya, Ken M. Nakanishi, Kosuke Mitarai, Zhiguang Yan, Kun Zuo, Yasunari Suzuki, Takanori Sugiyama, Shuhei Tamate, Yutaka Tabuchi, Keisuke Fujii, and Yasunobu Nakamura, “Subspace variational quantum simulator,” Phys. Rev. Res. 5, 023078 (2023).
- Hongzheng Zhao, Marin Bukov, Markus Heyl, and Roderich Moessner, “Making trotterization adaptive and energy-self-correcting for nisq devices and beyond,” PRX Quantum 4, 030319 (2023a).
- Hongzheng Zhao, Marin Bukov, Markus Heyl, and Roderich Moessner, “Adaptive trotterization for time-dependent hamiltonian quantum dynamics using instantaneous conservation laws,” (2023b), arXiv:2307.10327 .
- Kaito Wada, Rudy Raymond, Yu-ya Ohnishi, Eriko Kaminishi, Michihiko Sugawara, Naoki Yamamoto, and Hiroshi C. Watanabe, “Simulating time evolution with fully optimized single-qubit gates on parametrized quantum circuits,” Phys. Rev. A 105, 062421 (2022).
- Conor Mc Keever and Michael Lubasch, “Classically optimized hamiltonian simulation,” Phys. Rev. Res. 5, 023146 (2023).
- R. Mansuroglu, T. Eckstein, L. Nützel, S. A Wilkinson, and M. J Hartmann, “Variational hamiltonian simulation for translational invariant systems via classical pre-processing,” Quantum Science and Technology 8, 025006 (2023a).
- Refik Mansuroglu, Felix Fischer, and Michael J. Hartmann, “Problem-specific classical optimization of hamiltonian simulation,” Physical Review Research 5 (2023b).
- Maurits S. J. Tepaske, Dominik Hahn, and David J. Luitz, “Optimal compression of quantum many-body time evolution operators into brickwall circuits,” SciPost Physics 14 (2023).
- Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter, “Elementary gates for quantum computation,” Physical Review A 52, 3457–3467 (1995).
- Elliott H. Lieb and Derek W. Robinson, “The finite group velocity of quantum spin systems,” Communications in Mathematical Physics 28, 251 – 257 (1972).
- S. Bravyi, M. B. Hastings, and F. Verstraete, “Lieb-robinson bounds and the generation of correlations and topological quantum order,” Physical Review Letters 97 (2006).
- C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić , “Quantum scarred eigenstates in a rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations,” Physical Review B 98 (2018).
- Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980 (2014).
- G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-not gates,” Phys. Rev. A 69, 010301 (2004).
- David Layden, “First-order trotter error from a second-order perspective,” Physical Review Letters 128 (2022).
- P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller, “Quantum simulation of a lattice schwinger model in a chain of trapped ions,” Physical Review X 3 (2013).
- Federica M. Surace, Paolo P. Mazza, Giuliano Giudici, Alessio Lerose, Andrea Gambassi, and Marcello Dalmonte, “Lattice gauge theories and string dynamics in rydberg atom quantum simulators,” Physical Review X 10 (2020).