Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal Input Structural Modifications for Strongly Structural Controllability (2311.05653v2)

Published 8 Nov 2023 in eess.SY and cs.SY

Abstract: This paper studies the problem of modifying the input matrix of a structured system to make the system strongly structurally controllable. We focus on the generalized structured systems that rely on zero/nonzero/arbitrary structure, i.e., some entries of system matrices are zeros, some are nonzero, and the remaining entries can be zero or nonzero (arbitrary). We analyze the feasibility of the problem, and if it is feasible, we reformulate it into another equivalent problem. This new formulation leads to a greedy heuristic algorithm. However, we also show that the greedy algorithm can give arbitrarily poor solutions for some special systems. Our alternative approach is a randomized Markov chain Monte Carlo-based algorithm. Unlike the greedy algorithm, this algorithm is guaranteed to converge to an optimal solution with high probability. Finally, we numerically evaluate the algorithms on random graphs to show that the algorithms perform well.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. G. Joseph, B. Nettasinghe, V. Krishnamurthy, and P. K. Varshney, “Controllability of network opinion in Erdös–Rényi graphs using sparse control inputs,” SIAM J. Control Optim., vol. 59, no. 3, pp. 2321–2345, 2021.
  2. S. Pequito, N. Popli, S. Kar, M. D. Ilić, and A. P. Aguiar, “A framework for actuator placement in large scale power systems: Minimal strong structural controllability,” in Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor Adapt. Process., Dec. 2013, pp. 416–419.
  3. S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu, A. E. Kahn, J. D. Medaglia, J. M. Vettel, M. B. Miller, S. T. Grafton et al., “Controllability of structural brain networks,” Nat. Commun., vol. 6, no. 1, p. 8414, Oct. 2015.
  4. H. Mayeda and T. Yamada, “Strong structural controllability,” SIAM J. Control Optim., vol. 17, no. 1, pp. 123–138, 1979.
  5. F. Liu and A. S. Morse, “Structural controllability of linear systems,” in Proc. IEEE Conf. Decis. Control, Dec. 2017, pp. 3588–3593.
  6. S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong structural controllability of undirected networks,” IEEE Trans. Autom. Control., vol. 63, no. 7, pp. 2234–2241, Oct. 2017.
  7. T. Menara, D. S. Bassett, and F. Pasqualetti, “Structural controllability of symmetric networks,” IEEE Trans. Autom. Control., vol. 64, no. 9, pp. 3740–3747, Nov. 2018.
  8. K. Reinschke, F. Svaricek, and H.-D. Wend, “On strong structural controllability of linear systems,” in Proc. IEEE Conf. Decis. Control, Dec. 1992, pp. 203–208.
  9. J. C. Jarczyk, F. Svaricek, and B. Alt, “Strong structural controllability of linear systems revisited,” in Proc. IEEE Conf. Decis. Control/Eur. Control Conf., Dec. 2011, pp. 1213–1218.
  10. A. Chapman and M. Mesbahi, “On strong structural controllability of networked systems: A constrained matching approach,” in Proc. Amer. Control Conf., Jun. 2013, pp. 6126–6131.
  11. K. Yashashwi, S. Moothedath, and P. Chaporkar, “Minimizing inputs for strong structural controllability,” in Proc. Amer. Control Conf., Jun. 2019, pp. 2048–2053.
  12. W. Abbas, M. Shabbir, Y. Yazıcıoğlu, and X. Koutsoukos, “On zero forcing sets and network controllability–computation and edge augmentation,” IEEE Trans. Control Netw. Syst., 2023, (in press).
  13. M. Trefois and J.-C. Delvenne, “Zero forcing number, constrained matchings and strong structural controllability,” Linear Algebra Appl., vol. 484, pp. 199–218, Nov. 2015.
  14. J. Li, X. Chen, S. Pequito, G. J. Pappas, and V. M. Preciado, “On the structural target controllability of undirected networks,” IEEE Trans. Autom. Control., vol. 66, no. 10, pp. 4836–4843, Nov. 2020.
  15. N. Monshizadeh, K. Camlibel, and H. Trentelman, “Strong targeted controllability of dynamical networks,” in n Proc. IEEE Conf. Decis. Control, Dec. 2015, pp. 4782–4787.
  16. J. Jia, H. J. Van Waarde, H. L. Trentelman, and M. K. Camlibel, “A unifying framework for strong structural controllability,” IEEE Trans. Autom. Control., vol. 66, no. 1, pp. 391–398, Mar. 2020.
  17. Y. Zhang and T. Zhou, “Minimal structural perturbations for controllability of a networked system: Complexities and approximations,” Int. J. Robust Nonlinear Control, vol. 29, no. 12, pp. 4191–4208, Aug. 2019.
  18. X. Chen, S. Pequito, G. J. Pappas, and V. M. Preciado, “Minimal edge addition for network controllability,” IEEE Trans. Control Netw. Syst., vol. 6, no. 1, pp. 312–323, Mar. 2019.
  19. L. Wang, Z. Li, G. Zhao, G. Guo, and Z. Kong, “Input structure design for structural controllability of complex networks,” IEEE/CAA J. Autom. Sin., vol. 10, no. 7, pp. 1571–1581, Jun. 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.