Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Data Processing and Machine Learning Techniques in P300-based Authentication using Brain-Computer Interfaces (2311.05270v1)

Published 9 Nov 2023 in cs.HC

Abstract: Brain-Computer Interfaces (BCIs) are used in various application scenarios allowing direct communication between the brain and computers. Specifically, electroencephalography (EEG) is one of the most common techniques for obtaining evoked potentials resulting from external stimuli, as the P300 potential is elicited from known images. The combination of Machine Learning (ML) and P300 potentials is promising for authenticating subjects since the brain waves generated by each person when facing a particular stimulus are unique. However, existing authentication solutions do not extensively explore P300 potentials and fail when analyzing the most suitable processing and ML-based classification techniques. Thus, this work proposes i) a framework for authenticating BCI users using the P300 potential; ii) the validation of the framework on ten subjects creating an experimental scenario employing a non-invasive EEG-based BCI; and iii) the evaluation of the framework performance defining two experiments (binary and multiclass ML classification) and three testing configurations incrementally analyzing the performance of different processing techniques and the differences between classifying with epochs or statistical values. This framework achieved a performance close to 100\% f1-score in both experiments for the best classifier, highlighting its effectiveness in accurately authenticating users and demonstrating the feasibility of performing EEG-based authentication using P300 potentials.

Citations (1)

Summary

We haven't generated a summary for this paper yet.