Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive-Labeling for Enhancing Remote Sensing Cloud Understanding (2311.05198v1)

Published 9 Nov 2023 in cs.CV

Abstract: Cloud analysis is a critical component of weather and climate science, impacting various sectors like disaster management. However, achieving fine-grained cloud analysis, such as cloud segmentation, in remote sensing remains challenging due to the inherent difficulties in obtaining accurate labels, leading to significant labeling errors in training data. Existing methods often assume the availability of reliable segmentation annotations, limiting their overall performance. To address this inherent limitation, we introduce an innovative model-agnostic Cloud Adaptive-Labeling (CAL) approach, which operates iteratively to enhance the quality of training data annotations and consequently improve the performance of the learned model. Our methodology commences by training a cloud segmentation model using the original annotations. Subsequently, it introduces a trainable pixel intensity threshold for adaptively labeling the cloud training images on the fly. The newly generated labels are then employed to fine-tune the model. Extensive experiments conducted on multiple standard cloud segmentation benchmarks demonstrate the effectiveness of our approach in significantly boosting the performance of existing segmentation models. Our CAL method establishes new state-of-the-art results when compared to a wide array of existing alternatives.

Summary

We haven't generated a summary for this paper yet.