Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequency-Based Reduced Models from Purely Time-Domain Data via Data Informativity (2311.05012v3)

Published 8 Nov 2023 in math.NA and cs.NA

Abstract: Frequency-based methods have been successfully employed in creating high fidelity data-driven reduced order models (DDROMs) for linear dynamical systems. These methods require access to values (and sometimes derivatives) of the frequency-response function (transfer function) in the complex plane. These frequency domain values can at times be costly or difficult to obtain (especially if the method of choice requires resampling); instead one may have access to only time-domain input-output data. The data informativity approach to moment matching provides a powerful new framework for recovering the required frequency data from a single time-domain trajectory. In this work, we analyze and extend upon this framework, resulting in vastly improved conditioning of the associated linear systems, an error indicator, and removal of an assumption that the system order is known. This analysis leads to a robust algorithm for recovering frequency information from time-domain data, suitable for large scale systems. We demonstrate the effectiveness of our algorithm by forming frequency based DDROMs from time-domain data of several dynamical systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.