Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularity and Optimal Control of Non Local Cahn Hilliard Brinkman system with Singular Potential (2311.05008v2)

Published 8 Nov 2023 in math.AP and math.OC

Abstract: The evolution of two incompressible, immiscible, isothermal fluids in a bounded domain and a porous media is described by the coupled Cahn-Hilliard-Brinkman (CHB) system. The CHB system consists of the Cahn-Hilliard equation describing the dynamics of the relative concentration of fluids and the Brinkman equation for velocity. This work addresses the optimal control problem for a two-dimensional nonlocal CHB system with a singular-type potential. The existence and regularity results are obtained by approximating the singular potential by a sequence of regular potentials and introducing a sequence of mobility terms to resolve the blow-up due to the singularity of the potential. Further, we prove the existence of a strong solution under higher regularity assumptions on the initial data and the uniqueness of the solution using the weak-strong uniqueness technique. By considering the external forcing term in the velocity equation as a control, we prove the existence of an optimal control for a tracking type cost functional. The differentiability properties of the control-to-state operator are studied to establish the first-order necessary optimality conditions. Moreover, the optimal control is characterised in terms of the adjoint variable.

Summary

We haven't generated a summary for this paper yet.