Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Recurrent Reinforcement Learning (2311.04830v2)

Published 8 Nov 2023 in cs.LG, cs.NE, cs.SY, and eess.SY

Abstract: In this paper we propose real-time recurrent reinforcement learning (RTRRL), a biologically plausible approach to solving discrete and continuous control tasks in partially-observable markov decision processes (POMDPs). RTRRL consists of three parts: (1) a Meta-RL RNN architecture, implementing on its own an actor-critic algorithm; (2) an outer reinforcement learning algorithm, exploiting temporal difference learning and dutch eligibility traces to train the Meta-RL network; and (3) random-feedback local-online (RFLO) learning, an online automatic differentiation algorithm for computing the gradients with respect to parameters of the network.Our experimental results show that by replacing the optimization algorithm in RTRRL with the biologically implausible back propagation through time (BPTT), or real-time recurrent learning (RTRL), one does not improve returns, while matching the computational complexity for BPTT, and even increasing complexity for RTRL. RTRRL thus serves as a model of learning in biological neural networks, mimicking reward pathways in the basal ganglia.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Julian Lemmel (6 papers)
  2. Radu Grosu (84 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets