Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Unsupervised Deep Learning Approach for the Wave Equation Inverse Problem (2311.04531v1)

Published 8 Nov 2023 in math.NA, cs.LG, and cs.NA

Abstract: Full-waveform inversion (FWI) is a powerful geophysical imaging technique that infers high-resolution subsurface physical parameters by solving a non-convex optimization problem. However, due to limitations in observation, e.g., limited shots or receivers, and random noise, conventional inversion methods are confronted with numerous challenges, such as the local-minimum problem. In recent years, a substantial body of work has demonstrated that the integration of deep neural networks and partial differential equations for solving full-waveform inversion problems has shown promising performance. In this work, drawing inspiration from the expressive capacity of neural networks, we provide an unsupervised learning approach aimed at accurately reconstructing subsurface physical velocity parameters. This method is founded on a re-parametrization technique for Bayesian inference, achieved through a deep neural network with random weights. Notably, our proposed approach does not hinge upon the requirement of the labeled training dataset, rendering it exceedingly versatile and adaptable to diverse subsurface models. Extensive experiments show that the proposed approach performs noticeably better than existing conventional inversion methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiong-Bin Yan (5 papers)
  2. Keke Wu (14 papers)
  3. Zhi-Qin John Xu (66 papers)
  4. Zheng Ma (110 papers)

Summary

We haven't generated a summary for this paper yet.