Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Network based Optimal Control of Greenhouses (2311.04077v2)

Published 7 Nov 2023 in eess.SY and cs.SY

Abstract: Automatic control of greenhouse crop production is of great interest owing to the increasing energy and labor costs. In this work, we use two-level control, where the upper level generates suitable reference trajectories for states and control inputs based on day-ahead predictions. These references are tracked in the lower level using Nonlinear Model Predictive Control (NMPC). In order to apply NMPC, a model of the greenhouse dynamics is essential. However, the complex nature of the underlying model including discontinuities and nonlinearities results in intractable computational complexity and long sampling times. As a remedy, we employ NMPC as a data generator to learn the tracking control policy using deep neural networks. Then, the references are tracked using the trained Deep Neural Network (DNN) to reduce the computational burden. The efficiency of our approach under real-time disturbances is demonstrated by means of a simulation study.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. T. Searchinger, R. Waite, C. Hanson, J. Ranganathan, P. Dumas, E. Matthews, and C. Klirs, “Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. final report,” 2019.
  2. D. Liu, X. Liu, K. Guo, Q. Ji, and Y. Chang, “Spillover effects among electricity prices, traditional energy prices and carbon market under climate risk,” Int. J. Environ. Res. Public Health, vol. 20, no. 2, 2023.
  3. R. Hassanien, M. Li, and W. Dong Lin, “Advanced applications of solar energy in agricultural greenhouses,” Renewable Sustainable Energy Rev., vol. 54, pp. 989–1001, 2016.
  4. E. Iddio, L. Wang, Y. Thomas, G. McMorrow, and A. Denzer, “Energy efficient operation and modeling for greenhouses: A literature review,” Renewable and Sustainable Energy Rev., vol. 117, p. 109480, 2020.
  5. Z. Ren, Y. Dong, D. Lin, L. Zhang, Y. Fan, and X. Xia, “Managing energy-water-carbon-food nexus for cleaner agricultural greenhouse production: A control system approach,” Sci. Total Environ., vol. 848, p. 157756, 2022.
  6. H. Hu, L. Xu, R. Wei, and B. Zhu, “Multi-objective control optimization for greenhouse environment using evolutionary algorithms,” Sensors, vol. 11, no. 6, pp. 5792–5807, 2011.
  7. Y. Su, L. Xu, and D. Li, “Adaptive fuzzy control of a class of mimo nonlinear system with actuator saturation for greenhouse climate control problem,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, p. 772 – 788, 2016.
  8. P. Van Beveren, J. Bontsema, G. Van Straten, and E. Van Henten, “Minimal heating and cooling in a modern rose greenhouse,” Appl. Energy, vol. 137, pp. 97–109, 2015.
  9. A. Ramírez-Arias, F. Rodríguez, J. Guzmán, and M. Berenguel, “Multiobjective hierarchical control architecture for greenhouse crop growth,” Automatica, vol. 48, no. 3, pp. 490–498, 2012.
  10. R. van Ooteghem, “Optimal control design for a solar greenhouse,” Ph.D. dissertation, 2007, wageningen University, Wageningen, The Netherlands. 304 p.
  11. M. Padmanabha, L. Beckenbach, and S. Streif, “Model predictive control of a food production unit: A case study for lettuce production,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 15 771–15 776, 2020, 21st IFAC World Congress.
  12. S. Lucia and B. Karg, “A deep learning-based approach to robust nonlinear model predictive control,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 511–516, 2018, 6th IFAC Conference on Nonlinear Model Predictive Control, 2018.
  13. T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear systems and a neural approximation,” Automatica, vol. 31, no. 10, pp. 1443–1451, 1995.
  14. S. Pon Kumar, A. Tulsyan, B. Gopaluni, and P. Loewen, “A deep learning architecture for predictive control,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 512–517, 2018, 10th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2018.
  15. M. Hertneck, J. Köhler, F. Trimpe, and F. Allgöwer, “Learning an approximate model predictive controller with guarantees,” IEEE Control Syst. Lett., vol. 2, no. 3, pp. 543–548, 2018.
  16. P. Van Beveren, J. Bontsema, G. van Straten, and E. van Henten, “Optimal control of greenhouse climate using minimal energy and grower defined bounds,” Appl. Energy, vol. 159, pp. 509–519, 2015.
  17. J. Bontsema, J. Hemming, C. Stanghellini, P. De Visser, E. Van Henten, J. Budding, T. Rieswijk, and S. Nieboer, “On-line estimation of the transpiration in greenhouse horticulture,” in Proceedings Agricontrol 2007. 2nd IFAC International Conference on Modeling and Design of Control Systems in Agriculture, Osijek, Croatia, 3-5 September, 2007, 2008, pp. 29–34.
  18. C. Stanghellini and T. de Jong, “A model of humidity and its applications in a greenhouse,” Agric. For. Meteorol., vol. 76, no. 2, pp. 129–148, 1995.
  19. D. Dannehl, H. Kläring, and U. Schmidt, “Light-mediated reduction in photosynthesis in closed greenhouses can be compensated for by CO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT enrichment in tomato production,” Plants, vol. 10, no. 12, 2021.
  20. K. Biswas, S. Kumar, S. Banerjee, and A. Pandey, “SMU: smooth activation function for deep networks using smoothing maximum technique,” arXiv e-prints, p. arXiv:2111.04682, Nov. 2021.
  21. J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.” J. Mach. Learn. Res., vol. 13, no. 2, 2012.
  22. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
  23. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.
  24. J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl, “CasADi: a software framework for nonlinear optimization and optimal control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, 2019.
  25. A. Wächter and L. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Math. Program., vol. 106, no. 1, pp. 25–57, 2006.
Citations (1)

Summary

We haven't generated a summary for this paper yet.