Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic convergence of regularized solutions for backward heat conduction problems (2311.03623v1)

Published 7 Nov 2023 in math.NA and cs.NA

Abstract: In this paper, we study the stochastic convergence of regularized solutions for backward heat conduction problems. These problems are recognized as ill-posed due to the exponential decay of eigenvalues associated with the forward problems. We derive an error estimate for the least-squares regularized minimization problem within the framework of stochastic convergence. Our analysis reveals that the optimal error of the Tikhonov-type least-squares optimization problem depends on the noise level, the number of sensors, and the underlying ground truth. Moreover, we propose a self-adaptive algorithm to identify the optimal regularization parameter for the optimization problem without requiring knowledge of the noise level or any other prior information, which will be very practical in applications. We present numerical examples to demonstrate the accuracy and efficiency of our proposed method. These numerical results show that our method is efficient in solving backward heat conduction problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.