Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seeding Gaussian boson samplers with single photons for enhanced state generation (2311.03432v2)

Published 6 Nov 2023 in quant-ph

Abstract: Non-Gaussian quantum states are crucial to fault-tolerant quantum computation with continuous-variable systems. Usually, generation of such states involves trade-offs between success probability and quality of the resultant state. For example, injecting squeezed light into a multimode interferometer and postselecting on certain patterns of photon-number outputs in all but one mode, a fundamentally probabilistic task, can herald the creation of cat states, Gottesman-Kitaev-Preskill (GKP) states, and more. We consider the addition of a non-Gaussian resource state, particularly single photons, to this configuration and show how it improves the qualities and generation probabilities of desired states. With only two modes, adding a single photon source improves GKP-state fidelity from 0.68 to 0.95 and adding a second then increases the success probability eightfold; for cat states with a fixed target fidelity, the probability of success can be improved by factors of up to 4 by adding single-photon sources. These demonstrate the usefulness of additional commonplace non-Gaussian resources for generating desirable states of light.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. D. T. Pegg, L. S. Phillips, and S. M. Barnett, Optical state truncation by projection synthesis, Phys. Rev. Lett. 81, 1604 (1998a).
  2. A. I. Lvovsky and J. Mlynek, Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics, Phys. Rev. Lett. 88, 250401 (2002b).
  3. J. Wenger, R. Tualle-Brouri, and P. Grangier, Non-gaussian statistics from individual pulses of squeezed light, Phys. Rev. Lett. 92, 153601 (2004).
  4. A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306, 660 (2004), https://www.science.org/doi/pdf/10.1126/science.1103190 .
  5. H. M. Vasconcelos, L. Sanz, and S. Glancy, All-optical generation of states for “encoding a qubit in an oscillator”, Opt. Lett. 35, 3261 (2010a).
  6. T. J. Bartley and I. A. Walmsley, Directly comparing entanglement-enhancing non-gaussian operations, New Journal of Physics 17, 023038 (2015).
  7. R. J. Birrittella, M. E. Baz, and C. C. Gerry, Photon catalysis and quantum state engineering, J. Opt. Soc. Am. B 35, 1514 (2018).
  8. S. Takeda and A. Furusawa, Toward large-scale fault-tolerant universal photonic quantum computing, APL Photonics 4, 060902 (2019), https://pubs.aip.org/aip/app/article-pdf/doi/10.1063/1.5100160/14568729/060902_1_online.pdf .
  9. M. Eaton, R. Nehra, and O. Pfister, Non-gaussian and gottesman–kitaev–preskill state preparation by photon catalysis, New Journal of Physics 21, 113034 (2019a).
  10. D. Su, C. R. Myers, and K. K. Sabapathy, Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors, Phys. Rev. A 100, 052301 (2019b).
  11. D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
  12. D. J. Weigand and B. M. Terhal, Generating grid states from Schrödinger-cat states without postselection, Phys. Rev. A 97, 022341 (2018b).
  13. V. Dodonov, I. Malkin, and V. Man’ko, Even and odd coherent states and excitations of a singular oscillator, Physica 72, 597 (1974).
  14. P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999a).
  15. H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65, 042305 (2002).
  16. W. H. Zurek, Sub-planck structure in phase space and its relevance for quantum decoherence, Nature 412, 712 (2001).
  17. D. A. R. Dalvit, R. L. de Matos Filho, and F. Toscano, Quantum metrology at the heisenberg limit with ion trap motional compass states, New Journal of Physics 8, 276 (2006).
  18. E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23, 807 (1935).
  19. N. Akhtar, B. C. Sanders, and C. Navarrete-Benlloch, Sub-planck structures: Analogies between the heisenberg-weyl and su(2) groups, Phys. Rev. A 103, 053711 (2021).
  20. A. Z. Goldberg and K. Heshami, How squeezed states both maximize and minimize the same notion of quantumness, Phys. Rev. A 104, 032425 (2021).
  21. J. Marshall and N. Anand, Simulation of quantum optics by coherent state decomposition, Optica Quantum 1, 78 (2023).
  22. M. Walschaers, Non-gaussian quantum states and where to find them, PRX Quantum 2, 030204 (2021).
  23. G. Giedke and J. Ignacio Cirac, Characterization of gaussian operations and distillation of gaussian states, Phys. Rev. A 66, 032316 (2002).
  24. S. Tserkis and T. C. Ralph, Quantifying entanglement in two-mode gaussian states, Phys. Rev. A 96, 062338 (2017).
  25. S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, Phys. Rev. Lett. 82, 1784 (1999).
  26. U. Chabaud and M. Walschaers, Resources for bosonic quantum computational advantage, Phys. Rev. Lett. 130, 090602 (2023).
  27. A. L. Grimsmo and S. Puri, Quantum error correction with the gottesman-kitaev-preskill code, PRX Quantum 2, 020101 (2021).
  28. J. Hastrup and U. L. Andersen, Protocol for generating optical gottesman-kitaev-preskill states with cavity qed, Phys. Rev. Lett. 128, 170503 (2022a).
  29. A. Gaidash, A. Kozubov, and G. Miroshnichenko, Countermeasures for advanced unambiguous state discrimination attack on quantum key distribution protocol based on weak coherent states, Physica Scripta 94, 125102 (2019).
  30. M. Tatsuta, Y. Matsuzaki, and A. Shimizu, Quantum metrology with generalized cat states, Phys. Rev. A 100, 032318 (2019).
  31. J. Hastrup and U. L. Andersen, All-optical cat-code quantum error correction, Phys. Rev. Res. 4, 043065 (2022b).
  32. M. Mirrahimi, Cat-qubits for quantum computation, Comptes Rendus Physique 17, 778 (2016), quantum microwaves / Micro-ondes quantiques.
  33. A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).
  34. D. S. Schlegel, F. Minganti, and V. Savona, Quantum error correction using squeezed Schrödinger cat states, Phys. Rev. A 106, 022431 (2022).
  35. Šimon Bräuer and P. Marek, Generation of quantum states with nonlinear squeezing by kerr nonlinearity, Opt. Express 29, 22648 (2021).
  36. E. R. Zinatullin, S. B. Korolev, and T. Y. Golubeva, Teleportation protocols with non-gaussian operations: Conditional photon subtraction versus cubic phase gate, Phys. Rev. A 107, 022422 (2023).
  37. L. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8, 189 (1979).
  38. U. Chabaud, D. Markham, and F. Grosshans, Stellar representation of non-gaussian quantum states, Phys. Rev. Lett. 124, 063605 (2020).
  39. J. Fiurášek, R. García-Patrón, and N. J. Cerf, Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions, Phys. Rev. A 72, 033822 (2005).
  40. S.-Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A 82, 053812 (2010).
  41. A. Miranowicz, Optical-state truncation and teleportation of qudits by conditional eight-port interferometry, Journal of Optics B: Quantum and Semiclassical Optics 7, 142 (2005).
  42. E. P. Mattos and A. Vidiella-Barranco, Enhancing nonclassical properties of quantum states of light using linear optics, Opt. Lett. 48, 3645 (2023).
  43. K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Quantum state preparation and conditional coherence, Phys. Rev. Lett. 88, 113601 (2002).
  44. B. Lounis and M. Orrit, Single-photon sources, Reports on Progress in Physics 68, 1129 (2005).
  45. S. Olivares, M. Popovic, and M. G. A. Paris, Phase estimation with squeezed single photons, Quantum Measurements and Quantum Metrology 3, 10.1515/qmetro-2016-0007 (2016).
  46. A. M. Brańczyk and T. C. Ralph, Teleportation using squeezed single photons, Phys. Rev. A 78, 052304 (2008).
  47. A. Zavatta, S. Viciani, and M. Bellini, Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission, Phys. Rev. A 72, 023820 (2005).
  48. S. Olivares and M. G. A. Paris, Squeezed fock state by inconclusive photon subtraction, Journal of Optics B: Quantum and Semiclassical Optics 7, S616 (2005).
  49. Xanadu Quantum Technologies. MrMustard, https://github.com/XanaduAI/MrMustard (2022).
  50. J. Li, R. Pereira, and S. Plosker, Some geometric interpretations of quantum fidelity, Linear Algebra and its Applications 487, 158 (2015).
  51. G. S. Agarwal, Quantum Optics (Cambridge University Press, 2012).
Citations (2)

Summary

We haven't generated a summary for this paper yet.