Seeding Gaussian boson samplers with single photons for enhanced state generation (2311.03432v2)
Abstract: Non-Gaussian quantum states are crucial to fault-tolerant quantum computation with continuous-variable systems. Usually, generation of such states involves trade-offs between success probability and quality of the resultant state. For example, injecting squeezed light into a multimode interferometer and postselecting on certain patterns of photon-number outputs in all but one mode, a fundamentally probabilistic task, can herald the creation of cat states, Gottesman-Kitaev-Preskill (GKP) states, and more. We consider the addition of a non-Gaussian resource state, particularly single photons, to this configuration and show how it improves the qualities and generation probabilities of desired states. With only two modes, adding a single photon source improves GKP-state fidelity from 0.68 to 0.95 and adding a second then increases the success probability eightfold; for cat states with a fixed target fidelity, the probability of success can be improved by factors of up to 4 by adding single-photon sources. These demonstrate the usefulness of additional commonplace non-Gaussian resources for generating desirable states of light.
- D. T. Pegg, L. S. Phillips, and S. M. Barnett, Optical state truncation by projection synthesis, Phys. Rev. Lett. 81, 1604 (1998a).
- A. I. Lvovsky and J. Mlynek, Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics, Phys. Rev. Lett. 88, 250401 (2002b).
- J. Wenger, R. Tualle-Brouri, and P. Grangier, Non-gaussian statistics from individual pulses of squeezed light, Phys. Rev. Lett. 92, 153601 (2004).
- A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306, 660 (2004), https://www.science.org/doi/pdf/10.1126/science.1103190 .
- H. M. Vasconcelos, L. Sanz, and S. Glancy, All-optical generation of states for “encoding a qubit in an oscillator”, Opt. Lett. 35, 3261 (2010a).
- T. J. Bartley and I. A. Walmsley, Directly comparing entanglement-enhancing non-gaussian operations, New Journal of Physics 17, 023038 (2015).
- R. J. Birrittella, M. E. Baz, and C. C. Gerry, Photon catalysis and quantum state engineering, J. Opt. Soc. Am. B 35, 1514 (2018).
- S. Takeda and A. Furusawa, Toward large-scale fault-tolerant universal photonic quantum computing, APL Photonics 4, 060902 (2019), https://pubs.aip.org/aip/app/article-pdf/doi/10.1063/1.5100160/14568729/060902_1_online.pdf .
- M. Eaton, R. Nehra, and O. Pfister, Non-gaussian and gottesman–kitaev–preskill state preparation by photon catalysis, New Journal of Physics 21, 113034 (2019a).
- D. Su, C. R. Myers, and K. K. Sabapathy, Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors, Phys. Rev. A 100, 052301 (2019b).
- D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
- D. J. Weigand and B. M. Terhal, Generating grid states from Schrödinger-cat states without postselection, Phys. Rev. A 97, 022341 (2018b).
- V. Dodonov, I. Malkin, and V. Man’ko, Even and odd coherent states and excitations of a singular oscillator, Physica 72, 597 (1974).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999a).
- H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65, 042305 (2002).
- W. H. Zurek, Sub-planck structure in phase space and its relevance for quantum decoherence, Nature 412, 712 (2001).
- D. A. R. Dalvit, R. L. de Matos Filho, and F. Toscano, Quantum metrology at the heisenberg limit with ion trap motional compass states, New Journal of Physics 8, 276 (2006).
- E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23, 807 (1935).
- N. Akhtar, B. C. Sanders, and C. Navarrete-Benlloch, Sub-planck structures: Analogies between the heisenberg-weyl and su(2) groups, Phys. Rev. A 103, 053711 (2021).
- A. Z. Goldberg and K. Heshami, How squeezed states both maximize and minimize the same notion of quantumness, Phys. Rev. A 104, 032425 (2021).
- J. Marshall and N. Anand, Simulation of quantum optics by coherent state decomposition, Optica Quantum 1, 78 (2023).
- M. Walschaers, Non-gaussian quantum states and where to find them, PRX Quantum 2, 030204 (2021).
- G. Giedke and J. Ignacio Cirac, Characterization of gaussian operations and distillation of gaussian states, Phys. Rev. A 66, 032316 (2002).
- S. Tserkis and T. C. Ralph, Quantifying entanglement in two-mode gaussian states, Phys. Rev. A 96, 062338 (2017).
- S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, Phys. Rev. Lett. 82, 1784 (1999).
- U. Chabaud and M. Walschaers, Resources for bosonic quantum computational advantage, Phys. Rev. Lett. 130, 090602 (2023).
- A. L. Grimsmo and S. Puri, Quantum error correction with the gottesman-kitaev-preskill code, PRX Quantum 2, 020101 (2021).
- J. Hastrup and U. L. Andersen, Protocol for generating optical gottesman-kitaev-preskill states with cavity qed, Phys. Rev. Lett. 128, 170503 (2022a).
- A. Gaidash, A. Kozubov, and G. Miroshnichenko, Countermeasures for advanced unambiguous state discrimination attack on quantum key distribution protocol based on weak coherent states, Physica Scripta 94, 125102 (2019).
- M. Tatsuta, Y. Matsuzaki, and A. Shimizu, Quantum metrology with generalized cat states, Phys. Rev. A 100, 032318 (2019).
- J. Hastrup and U. L. Andersen, All-optical cat-code quantum error correction, Phys. Rev. Res. 4, 043065 (2022b).
- M. Mirrahimi, Cat-qubits for quantum computation, Comptes Rendus Physique 17, 778 (2016), quantum microwaves / Micro-ondes quantiques.
- A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).
- D. S. Schlegel, F. Minganti, and V. Savona, Quantum error correction using squeezed Schrödinger cat states, Phys. Rev. A 106, 022431 (2022).
- Šimon Bräuer and P. Marek, Generation of quantum states with nonlinear squeezing by kerr nonlinearity, Opt. Express 29, 22648 (2021).
- E. R. Zinatullin, S. B. Korolev, and T. Y. Golubeva, Teleportation protocols with non-gaussian operations: Conditional photon subtraction versus cubic phase gate, Phys. Rev. A 107, 022422 (2023).
- L. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8, 189 (1979).
- U. Chabaud, D. Markham, and F. Grosshans, Stellar representation of non-gaussian quantum states, Phys. Rev. Lett. 124, 063605 (2020).
- J. Fiurášek, R. García-Patrón, and N. J. Cerf, Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions, Phys. Rev. A 72, 033822 (2005).
- S.-Y. Lee and H. Nha, Quantum state engineering by a coherent superposition of photon subtraction and addition, Phys. Rev. A 82, 053812 (2010).
- A. Miranowicz, Optical-state truncation and teleportation of qudits by conditional eight-port interferometry, Journal of Optics B: Quantum and Semiclassical Optics 7, 142 (2005).
- E. P. Mattos and A. Vidiella-Barranco, Enhancing nonclassical properties of quantum states of light using linear optics, Opt. Lett. 48, 3645 (2023).
- K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Quantum state preparation and conditional coherence, Phys. Rev. Lett. 88, 113601 (2002).
- B. Lounis and M. Orrit, Single-photon sources, Reports on Progress in Physics 68, 1129 (2005).
- S. Olivares, M. Popovic, and M. G. A. Paris, Phase estimation with squeezed single photons, Quantum Measurements and Quantum Metrology 3, 10.1515/qmetro-2016-0007 (2016).
- A. M. Brańczyk and T. C. Ralph, Teleportation using squeezed single photons, Phys. Rev. A 78, 052304 (2008).
- A. Zavatta, S. Viciani, and M. Bellini, Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission, Phys. Rev. A 72, 023820 (2005).
- S. Olivares and M. G. A. Paris, Squeezed fock state by inconclusive photon subtraction, Journal of Optics B: Quantum and Semiclassical Optics 7, S616 (2005).
- Xanadu Quantum Technologies. MrMustard, https://github.com/XanaduAI/MrMustard (2022).
- J. Li, R. Pereira, and S. Plosker, Some geometric interpretations of quantum fidelity, Linear Algebra and its Applications 487, 158 (2015).
- G. S. Agarwal, Quantum Optics (Cambridge University Press, 2012).