Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Separating and Learning Latent Confounders to Enhancing User Preferences Modeling (2311.03381v2)

Published 2 Nov 2023 in cs.IR, cs.AI, cs.LG, and stat.ME

Abstract: Recommender models aim to capture user preferences from historical feedback and then predict user-specific feedback on candidate items. However, the presence of various unmeasured confounders causes deviations between the user preferences in the historical feedback and the true preferences, resulting in models not meeting their expected performance. Existing debias models either (1) specific to solving one particular bias or (2) directly obtain auxiliary information from user historical feedback, which cannot identify whether the learned preferences are true user preferences or mixed with unmeasured confounders. Moreover, we find that the former recommender system is not only a successor to unmeasured confounders but also acts as an unmeasured confounder affecting user preference modeling, which has always been neglected in previous studies. To this end, we incorporate the effect of the former recommender system and treat it as a proxy for all unmeasured confounders. We propose a novel framework, Separating and Learning Latent Confounders For Recommendation (SLFR), which obtains the representation of unmeasured confounders to identify the counterfactual feedback by disentangling user preferences and unmeasured confounders, then guides the target model to capture the true preferences of users. Extensive experiments in five real-world datasets validate the advantages of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hangtong Xu (3 papers)
  2. Yuanbo Xu (11 papers)
  3. Yongjian Yang (12 papers)

Summary

We haven't generated a summary for this paper yet.