Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distribution-uniform anytime-valid sequential inference

Published 6 Nov 2023 in math.ST, stat.ME, and stat.TH | (2311.03343v2)

Abstract: Are asymptotic confidence sequences and anytime $p$-values uniformly valid for a nontrivial class of distributions $\mathcal{P}$? We give a positive answer to this question by deriving distribution-uniform anytime-valid inference procedures. Historically, anytime-valid methods -- including confidence sequences, anytime $p$-values, and sequential hypothesis tests that enable inference at stopping times -- have been justified nonasymptotically. Nevertheless, asymptotic procedures such as those based on the central limit theorem occupy an important part of statistical toolbox due to their simplicity, universality, and weak assumptions. While recent work has derived asymptotic analogues of anytime-valid methods with the aforementioned benefits, these were not shown to be $\mathcal{P}$-uniform, meaning that their asymptotics are not uniformly valid in a class of distributions $\mathcal{P}$. Indeed, the anytime-valid inference literature currently has no central limit theory to draw from that is both uniform in $\mathcal{P}$ and in the sample size $n$. This paper fills that gap by deriving a novel $\mathcal{P}$-uniform strong Gaussian approximation theorem. We apply some of these results to obtain an anytime-valid test of conditional independence without the Model-X assumption, as well as a $\mathcal{P}$-uniform law of the iterated logarithm.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.