Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution-uniform anytime-valid sequential inference (2311.03343v2)

Published 6 Nov 2023 in math.ST, stat.ME, and stat.TH

Abstract: Are asymptotic confidence sequences and anytime $p$-values uniformly valid for a nontrivial class of distributions $\mathcal{P}$? We give a positive answer to this question by deriving distribution-uniform anytime-valid inference procedures. Historically, anytime-valid methods -- including confidence sequences, anytime $p$-values, and sequential hypothesis tests that enable inference at stopping times -- have been justified nonasymptotically. Nevertheless, asymptotic procedures such as those based on the central limit theorem occupy an important part of statistical toolbox due to their simplicity, universality, and weak assumptions. While recent work has derived asymptotic analogues of anytime-valid methods with the aforementioned benefits, these were not shown to be $\mathcal{P}$-uniform, meaning that their asymptotics are not uniformly valid in a class of distributions $\mathcal{P}$. Indeed, the anytime-valid inference literature currently has no central limit theory to draw from that is both uniform in $\mathcal{P}$ and in the sample size $n$. This paper fills that gap by deriving a novel $\mathcal{P}$-uniform strong Gaussian approximation theorem. We apply some of these results to obtain an anytime-valid test of conditional independence without the Model-X assumption, as well as a $\mathcal{P}$-uniform law of the iterated logarithm.

Summary

We haven't generated a summary for this paper yet.