Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TFNet: Tuning Fork Network with Neighborhood Pixel Aggregation for Improved Building Footprint Extraction (2311.02617v1)

Published 5 Nov 2023 in cs.CV

Abstract: This paper considers the problem of extracting building footprints from satellite imagery -- a task that is critical for many urban planning and decision-making applications. While recent advancements in deep learning have made great strides in automated detection of building footprints, state-of-the-art methods available in existing literature often generate erroneous results for areas with densely connected buildings. Moreover, these methods do not incorporate the context of neighborhood images during training thus generally resulting in poor performance at image boundaries. In light of these gaps, we propose a novel Tuning Fork Network (TFNet) design for deep semantic segmentation that not only performs well for widely-spaced building but also has good performance for buildings that are closely packed together. The novelty of TFNet architecture lies in a a single encoder followed by two parallel decoders to separately reconstruct the building footprint and the building edge. In addition, the TFNet design is coupled with a novel methodology of incorporating neighborhood information at the tile boundaries during the training process. This methodology further improves performance, especially at the tile boundaries. For performance comparisons, we utilize the SpaceNet2 and WHU datasets, as well as a dataset from an area in Lahore, Pakistan that captures closely connected buildings. For all three datasets, the proposed methodology is found to significantly outperform benchmark methods.

Summary

We haven't generated a summary for this paper yet.