Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Discrimination Between Two Pure States and Dolinar-Type Coherent-State Detection (2311.02366v1)

Published 4 Nov 2023 in quant-ph, cs.IT, and math.IT

Abstract: We consider the problem of discrimination between two pure quantum states. It is well known that the optimal measurement under both the error-probability and log-loss criteria is a projection, while under an ``erasure-distortion'' criterion it is a three-outcome positive operator-valued measure (POVM). These results were derived separately. We present a unified approach which finds the optimal measurement under any distortion measure that satisfies a convexity relation with respect to the Bhattacharyya distance. Namely, whenever the measure is relatively convex (resp. concave), the measurement is the projection (resp. three-outcome POVM) above. The three above-mentioned results are obtained as special cases of this simple derivation. As for further measures for which our result applies, we prove that Renyi entropies of order $1$ and above (resp. $1/2$ and below) are relatively convex (resp. concave). A special setting of great practical interest, is the discrimination between two coherent-light waveforms. In a remarkable work by Dolinar it was shown that a simple detector consisting of a photon counter and a feedback-controlled local oscillator obtains the quantum-optimal error probability. Later it was shown that the same detector (with the same local signal) is also optimal in the log-loss sense. By applying a similar convexity approach, we obtain in a unified manner the optimal signal for a variety of criteria.

Summary

We haven't generated a summary for this paper yet.