Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProS: Facial Omni-Representation Learning via Prototype-based Self-Distillation (2311.01929v2)

Published 3 Nov 2023 in cs.CV

Abstract: This paper presents a novel approach, called Prototype-based Self-Distillation (ProS), for unsupervised face representation learning. The existing supervised methods heavily rely on a large amount of annotated training facial data, which poses challenges in terms of data collection and privacy concerns. To address these issues, we propose ProS, which leverages a vast collection of unlabeled face images to learn a comprehensive facial omni-representation. In particular, ProS consists of two vision-transformers (teacher and student models) that are trained with different augmented images (cropping, blurring, coloring, etc.). Besides, we build a face-aware retrieval system along with augmentations to obtain the curated images comprising predominantly facial areas. To enhance the discrimination of learned features, we introduce a prototype-based matching loss that aligns the similarity distributions between features (teacher or student) and a set of learnable prototypes. After pre-training, the teacher vision transformer serves as a backbone for downstream tasks, including attribute estimation, expression recognition, and landmark alignment, achieved through simple fine-tuning with additional layers. Extensive experiments demonstrate that our method achieves state-of-the-art performance on various tasks, both in full and few-shot settings. Furthermore, we investigate pre-training with synthetic face images, and ProS exhibits promising performance in this scenario as well.

Citations (3)

Summary

We haven't generated a summary for this paper yet.