Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SortNet: Learning To Rank By a Neural-Based Sorting Algorithm (2311.01864v1)

Published 3 Nov 2023 in cs.LG, cs.AI, cs.CL, and cs.IR

Abstract: The problem of relevance ranking consists of sorting a set of objects with respect to a given criterion. Since users may prefer different relevance criteria, the ranking algorithms should be adaptable to the user needs. Two main approaches exist in literature for the task of learning to rank: 1) a score function, learned by examples, which evaluates the properties of each object yielding an absolute relevance value that can be used to order the objects or 2) a pairwise approach, where a "preference function" is learned using pairs of objects to define which one has to be ranked first. In this paper, we present SortNet, an adaptive ranking algorithm which orders objects using a neural network as a comparator. The neural network training set provides examples of the desired ordering between pairs of items and it is constructed by an iterative procedure which, at each iteration, adds the most informative training examples. Moreover, the comparator adopts a connectionist architecture that is particularly suited for implementing a preference function. We also prove that such an architecture has the universal approximation property and can implement a wide class of functions. Finally, the proposed algorithm is evaluated on the LETOR dataset showing promising performances in comparison with other state of the art algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.