Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance estimation using h-statistics in Monte Carlo and multilevel Monte Carlo methods (2311.01336v2)

Published 2 Nov 2023 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods to determine the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. The numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. C. Bierig and A. Chernov. Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems. Numerische Mathematik, 130(4):579–613, Aug. 2015.
  2. C. Bierig and A. Chernov. Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo method. Stochastics and Partial Differential Equations Analysis and Computations, 4(1):3–40, Mar. 2016.
  3. Covariance determination for improving uncertainty realism in orbit determination and propagation. Advances in Space Research, 72(7):2759–2777, Oct. 2023.
  4. Multilevel ensemble Kalman filtering for spatio-temporal processes. Numerische Mathematik, 147(1):71–125, Jan. 2021.
  5. A. Chernov and E. M. Schetzke. A Simple, Bias-free Approximation of Covariance Functions by the Multilevel Monte Carlo Method Having Nearly Optimal Complexity. SIAM/ASA Journal on Uncertainty Quantification, 11(3):941–969, Sept. 2023. Publisher: Society for Industrial and Applied Mathematics.
  6. Multilevel monte carlo methods and applications to elliptic pdes with random coefficients. Computing and Visualization in Science, 14(1):3–15, 2011.
  7. N. Cressie. Statistics for Spatial Data. John Wiley & Sons, 2015.
  8. P. S. Dwyer. Moments of Any Rational Integral Isobaric Sample Moment Function. The Annals of Mathematical Statistics, 8(1):21–65, 1937. Publisher: Institute of Mathematical Statistics.
  9. J. Dölz. Data sparse multilevel covariance estimation in optimal complexity, Jan. 2023. arXiv:2301.11992 [cs, math].
  10. G. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research and Financial Engineering. Springer-Verlag, New York, 1996.
  11. M. B. Giles. Multilevel monte carlo path simulation. Operations Research, 56(3):607–617, 2008.
  12. M. B. Giles. Multilevel monte carlo methods. Acta Numerica, 24:259–328, 2015.
  13. C. Graham and D. Talay. Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation. Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin Heidelberg, 2013.
  14. Optimization of mesh hierarchies in multilevel Monte Carlo samplers. Stochastics and Partial Differential Equations Analysis and Computations, 4(1):76–112, Mar. 2016.
  15. A. Haldar and S. Mahadevan. Probability, Reliability and Statistical Methods in Engineering Design. John Wiley & Sons, Inc., New York, 2000.
  16. P. R. Halmos. The Theory of Unbiased Estimation. The Annals of Mathematical Statistics, 17(1):34–43, 1946. Publisher: Institute of Mathematical Statistics.
  17. S. Heinrich. Multilevel Monte Carlo Methods. In Large-Scale Scientific Computing, Lecture Notes in Computer Science, pages 58–67. Springer, 2001.
  18. Multilevel ensemble Kalman filtering. SIAM Journal on Numerical Analysis, 54(3):1813–1839, Jan. 2016.
  19. A. Hotz and R. E. Skelton. Covariance control theory. International Journal of Control, 46(1):13–32, July 1987.
  20. I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150202, Apr. 2016. Publisher: Royal Society.
  21. Quantifying uncertain system outputs via the multilevel Monte Carlo method — Part I: Central moment estimation. Journal of Computational Physics, 414:109466, Aug. 2020.
  22. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation. Springer Netherlands, Dordrecht, 2010.
  23. O. Ledoit and M. Wolf. The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation. Journal of Financial Econometrics, 20(1):187–218, Jan. 2022.
  24. A generalized sensitivity analysis method based on variance and covariance decomposition of summatory functions for multi-input multi-output systems. Computer Methods in Applied Mechanics and Engineering, 385:114009, Nov. 2021.
  25. Random field finite elements. International Journal for Numerical Methods in Engineering, 23(10):1831–1845, 1986.
  26. Inverse Problems in a Bayesian Setting. In A. Ibrahimbegovic, editor, Computational Methods for Solids and Fluids: Multiscale Analysis, Probability Aspects and Model Reduction, pages 245–286. Springer International Publishing, Cham, 2016.
  27. Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry. In Proceedings of the 40th International Conference on Machine Learning, pages 24214–24235. PMLR, July 2023. ISSN: 2640-3498.
  28. Multifidelity Covariance Estimation via Regression on the Manifold of Symmetric Positive Definite Matrices, July 2023. arXiv:2307.12438 [cs, math, stat].
  29. N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the American Statistical Association, 44(247):335–341, 1949.
  30. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. Journal of Computational Physics, 231(8):3365–3388, Apr. 2012.
  31. P. Mycek and M. De Lozzo. Multilevel Monte Carlo Covariance Estimation for the Computation of Sobol’ Indices. SIAM/ASA Journal on Uncertainty Quantification, 7(4):1323–1348, Jan. 2019.
  32. M. A. Pinsky and S. Karlin. An Introduction to Stochastic Modeling (Fourth Edition). Academic Press, Boston, Jan. 2011.
  33. A Multifidelity Ensemble Kalman Filter with Reduced Order Control Variates. SIAM Journal on Scientific Computing, 43(2):A1134–A1162, Jan. 2021.
  34. C. Rose and M. Smith. Mathematical statistics with M⁢a⁢t⁢h⁢e⁢m⁢a⁢t⁢i⁢c⁢a𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎Mathematicaitalic_M italic_a italic_t italic_h italic_e italic_m italic_a italic_t italic_i italic_c italic_a., volume 481. New York, NY: Springer, 2002.
  35. Parameter identification in a probabilistic setting. Engineering Structures, 50:179–196, May 2013.
  36. Sampling-free linear Bayesian update of polynomial chaos representations. Journal of Computational Physics, 231(17):5761–5787, July 2012.
  37. S. Shivanand. Mathematica notebook for h-statistics based MC and MLMC covariance estimation, https://bit.ly/hstatCov, 2024.
  38. S. K. Shivanand and B. Rosić. Scale-invariant multilevel Monte Carlo method and application to linear elasticity, July 2023. arXiv:2106.13723 [cs, math].
  39. I. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp., 4:407–414, 1993.
  40. I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1):271–280, Feb. 2001.
  41. T. Sullivan. Introduction to Uncertainty Quantification, volume 63 of Texts in Applied Mathematics. Springer International Publishing, Cham, 2015.
  42. D. Xiu. Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton, N.J, 2010. OCLC: ocn466341417.
  43. Geometric mean metric learning. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages 2464–2471, New York, NY, USA, June 2016. JMLR.org.
Citations (1)

Summary

We haven't generated a summary for this paper yet.