Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional Linear Bandits with Knapsacks (2311.01327v1)

Published 2 Nov 2023 in cs.LG, cs.DS, and stat.ML

Abstract: We study the contextual bandits with knapsack (CBwK) problem under the high-dimensional setting where the dimension of the feature is large. The reward of pulling each arm equals the multiplication of a sparse high-dimensional weight vector and the feature of the current arrival, with additional random noise. In this paper, we investigate how to exploit this sparsity structure to achieve improved regret for the CBwK problem. To this end, we first develop an online variant of the hard thresholding algorithm that performs the sparse estimation in an online manner. We further combine our online estimator with a primal-dual framework, where we assign a dual variable to each knapsack constraint and utilize an online learning algorithm to update the dual variable, thereby controlling the consumption of the knapsack capacity. We show that this integrated approach allows us to achieve a sublinear regret that depends logarithmically on the feature dimension, thus improving the polynomial dependency established in the previous literature. We also apply our framework to the high-dimension contextual bandit problem without the knapsack constraint and achieve optimal regret in both the data-poor regime and the data-rich regime. We finally conduct numerical experiments to show the efficient empirical performance of our algorithms under the high dimensional setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wanteng Ma (5 papers)
  2. Dong Xia (48 papers)
  3. Jiashuo Jiang (21 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.