Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Intra and Inter-Camera Invariance for Isolated Camera Supervised Person Re-identification (2311.01155v1)

Published 2 Nov 2023 in cs.CV

Abstract: Supervised person re-identification assumes that a person has images captured under multiple cameras. However when cameras are placed in distance, a person rarely appears in more than one camera. This paper thus studies person re-ID under such isolated camera supervised (ISCS) setting. Instead of trying to generate fake cross-camera features like previous methods, we explore a novel perspective by making efficient use of the variation in training data. Under ISCS setting, a person only has limited images from a single camera, so the camera bias becomes a critical issue confounding ID discrimination. Cross-camera images are prone to being recognized as different IDs simply by camera style. To eliminate the confounding effect of camera bias, we propose to learn both intra- and inter-camera invariance under a unified framework. First, we construct style-consistent environments via clustering, and perform prototypical contrastive learning within each environment. Meanwhile, strongly augmented images are contrasted with original prototypes to enforce intra-camera augmentation invariance. For inter-camera invariance, we further design a much improved variant of multi-camera negative loss that optimizes the distance of multi-level negatives. The resulting model learns to be invariant to both subtle and severe style variation within and cross-camera. On multiple benchmarks, we conduct extensive experiments and validate the effectiveness and superiority of the proposed method. Code will be available at https://github.com/Terminator8758/IICI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Menglin Wang (8 papers)
  2. Xiaojin Gong (22 papers)

Summary

We haven't generated a summary for this paper yet.