Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EHA: Entanglement-variational Hardware-efficient Ansatz for Eigensolvers (2311.01120v2)

Published 2 Nov 2023 in quant-ph

Abstract: Variational quantum eigensolvers (VQEs) are one of the most important and effective applications of quantum computing, especially in the current noisy intermediate-scale quantum (NISQ) era. There are mainly two ways for VQEs: problem-agnostic and problem-specific. For problem-agnostic methods, they often suffer from trainability issues. For problem-specific methods, their performance usually relies upon choices of initial reference states which are often hard to determine. In this paper, we propose an Entanglement-variational Hardware-efficient Ansatz (EHA), and numerically compare it with some widely used ansatzes by solving benchmark problems in quantum many-body systems and quantum chemistry. Our EHA is problem-agnostic and hardware-efficient, especially suitable for NISQ devices and having potential for wide applications. EHA can achieve a higher level of accuracy in finding ground states and their energies in most cases even compared with problem-specific methods. The performance of EHA is robust to choices of initial states and parameters initialization and it has the ability to quickly adjust the entanglement to the required amount, which is also the fundamental reason for its superiority.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V. Albert,  and John Preskill, “Provably efficient machine learning for quantum many-body problems,” Science 377, eabk3333 (2022).
  2. Alan Morningstar, Markus Hauru, Jackson Beall, Martin Ganahl, Adam G.M. Lewis, Vedika Khemani,  and Guifre Vidal, “Simulation of quantum many-body dynamics with Tensor Processing Units: Floquet prethermalization,” PRX Quantum 3, 020331 (2022).
  3. Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin,  and Xiao Yuan, “Quantum computational chemistry,” Rev. Mod. Phys. 92, 015003 (2020).
  4. Vincent E. Elfving, Marta Millaruelo, José A. Gámez,  and Christian Gogolin, “Simulating quantum chemistry in the seniority-zero space on qubit-based quantum computers,” Phys. Rev. A 103, 032605 (2021).
  5. Changsu Cao, Jiaqi Hu, Wengang Zhang, Xusheng Xu, Dechin Chen, Fan Yu, Jun Li, Han-Shi Hu, Dingshun Lv,  and Man-Hong Yung, “Progress toward larger molecular simulation on a quantum computer: Simulating a system with up to 28 qubits accelerated by point-group symmetry,” Phys. Rev. A 105, 062452 (2022).
  6. Bela Bauer, Sergey Bravyi, Mario Motta,  and Garnet Kin-Lic Chan, “Quantum algorithms for quantum chemistry and quantum materials science,” Chem. Rev. 120, 12685–12717 (2020).
  7. He Ma, Marco Govoni,  and Giulia Galli, “Quantum simulations of materials on near-term quantum computers,” npj Comput. Mater. 6, 85 (2020).
  8. Lindsay Bassman, Miroslav Urbanek, Mekena Metcalf, Jonathan Carter, Alexander F. Kemper,  and Wibe A. de Jong, “Simulating quantum materials with digital quantum computers,” Quantum Sci. Technol. 6, 043002 (2021).
  9. Daniel J. Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin, Martin Mevissen, Rudy Raymond, Andrea Simonetto, Stefan Woerner,  and Elena Yndurain, “Quantum computing for finance: State-of-the-art and future prospects,” IEEE Trans. Quantum Eng. 1, 3101724 (2020).
  10. M. Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio,  and Patrick J. Coles, “Challenges and opportunities in quantum machine learning,” Nat. Comput. Sci. 2, 567–576 (2022).
  11. John Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
  12. Kishor Bharti et al., “Noisy intermediate-scale quantum algorithms,” Rev. Mod. Phys. 94, 015004 (2022a).
  13. Kishor Bharti, Tobias Haug, Vlatko Vedral,  and Leong-Chuan Kwek, “Noisy intermediate-scale quantum algorithm for semidefinite programming,” Phys. Rev. A 105, 052445 (2022b).
  14. Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik,  and Jeremy L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nat. Commun. 5, 4213 (2014).
  15. M. Cerezo et al., “Variational quantum algorithms,” Nat. Rev. Phys. 3, 625–644 (2021).
  16. Jules Tilly et al., “The variational quantum eigensolver: a review of methods and best practices,” Phys. Rep. 986, 1–128 (2022).
  17. Joris Kattemölle and Jasper van Wezel, “Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice,” Phys. Rev. B 106, 214429 (2022).
  18. Andy C. Y. Li et al., “Benchmarking variational quantum eigensolvers for the square-octagon-lattice Kitaev model,” Phys. Rev. Res. 5, 033071 (2023).
  19. Adam Callison and Nicholas Chancellor, “Hybrid quantum-classical algorithms in the noisy intermediate-scale quantum era and beyond,” Phys. Rev. A 106, 010101 (2022).
  20. Mateusz Ostaszewski, Edward Grant,  and Marcello Benedetti, “Structure optimization for parameterized quantum circuits,” Quantum 5, 391 (2021a).
  21. Harper R. Grimsley, Sophia E. Economou, Edwin Barnes,  and Nicholas J. Mayhall, “An adaptive variational algorithm for exact molecular simulations on a quantum computer,” Nat. Commun. 10, 3007 (2019).
  22. Ho Lun Tang, V.O. Shkolnikov, George S. Barron, Harper R. Grimsley, Nicholas J. Mayhall, Edwin Barnes,  and Sophia E. Economou, “qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor,” PRX Quantum 2, 020310 (2021).
  23. Mateusz Ostaszewski, Lea M. Trenkwalder, Wojciech Masarczyk, Eleanor Scerri,  and Vedran Dunjko, “Reinforcement learning for optimization of variational quantum circuit architectures,” Advances in Neural Information Processing Systems 34, 18182–18194 (2021b).
  24. Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh,  and Dacheng Tao, “Quantum circuit architecture search for variational quantum algorithms,” npj Quantum Inf. 8, 62 (2022).
  25. Li Ding and Lee Spector, “Evolutionary quantum architecture search for parametrized quantum circuits,” in Proceedings of the Genetic and Evolutionary Computation Conference Companion (2022) pp. 2190–2195.
  26. Harper R. Grimsley, George S. Barron, Edwin Barnes, Sophia E. Economou,  and Nicholas J. Mayhall, “Adaptive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus,” npj Quantum Inf. 9, 19 (2023).
  27. Google AI Quantum, Collaborators*†, et al., “Hartree-Fock on a superconducting qubit quantum computer,” Science 369, 1084–1089 (2020).
  28. Chris Cade, Lana Mineh, Ashley Montanaro,  and Stasja Stanisic, “Strategies for solving the Fermi-Hubbard model on near-term quantum computers,” Phys. Rev. B 102, 235122 (2020).
  29. Yabo Wang, Bo Qi, Chris Ferrie,  and Daoyi Dong, “Trainability enhancement of parameterized quantum circuits via reduced-domain parameter initialization,” arXiv preprint arXiv:2302.06858  (2023).
  30. Kaining Zhang, Liu Liu, Min-Hsiu Hsieh,  and Dacheng Tao, “Escaping from the barren plateau via gaussian initializations in deep variational quantum circuits,” Advances in Neural Information Processing Systems 35, 18612–18627 (2022a).
  31. James Stokes, Josh Izaac, Nathan Killoran,  and Giuseppe Carleo, “Quantum Natural Gradient,” Quantum 4, 269 (2020).
  32. Alicia B. Magann, Kenneth M. Rudinger, Matthew D. Grace,  and Mohan Sarovar, “Feedback-based quantum optimization,” Phys. Rev. Lett. 129, 250502 (2022).
  33. Shi-Xin Zhang, Zhou-Quan Wan, Chee-Kong Lee, Chang-Yu Hsieh, Shengyu Zhang,  and Hong Yao, “Variational quantum-neural hybrid eigensolver,” Phys. Rev. Lett. 128, 120502 (2022b).
  34. Nicholas H. Stair and Francesco A. Evangelista, “Simulating many-body systems with a projective quantum eigensolver,” PRX Quantum 2, 030301 (2021).
  35. Alba Cervera-Lierta, Jakob S. Kottmann,  and Alán Aspuru-Guzik, “Meta-variational quantum eigensolver: Learning energy profiles of parameterized Hamiltonians for quantum simulation,” PRX Quantum 2, 020329 (2021).
  36. Keisuke Fujii, Kaoru Mizuta, Hiroshi Ueda, Kosuke Mitarai, Wataru Mizukami,  and Yuya O. Nakagawa, “Deep variational quantum eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers,” PRX Quantum 3, 010346 (2022).
  37. Tobias Haug, Kishor Bharti,  and M. S. Kim, “Capacity and quantum geometry of parametrized quantum circuits,” PRX Quantum 2, 040309 (2021).
  38. Sukin Sim, Peter D. Johnson,  and Alán Aspuru-Guzik, “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms,” Adv. Quantum Technol. 2, 1900070 (2019).
  39. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow,  and Jay M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature 549, 242–246 (2017).
  40. Boy Choy and David J. Wales, “Molecular energy landscapes of hardware-efficient ansatze in quantum computing,” J. Chem. Theory Comput. 19, 1197–1206 (2023).
  41. Lennart Bittel and Martin Kliesch, “Training variational quantum algorithms is NP-hard,” Phys. Rev. Lett. 127, 120502 (2021).
  42. Eric R. Anschuetz and Bobak T. Kiani, “Quantum variational algorithms are swamped with traps,” Nat. Commun. 13, 7760 (2022).
  43. Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush,  and Hartmut Neven, “Barren plateaus in quantum neural network training landscapes,” Nat. Commun. 9, 4812 (2018).
  44. Zoë Holmes, Kunal Sharma, M. Cerezo,  and Patrick J. Coles, “Connecting ansatz expressibility to gradient magnitudes and barren plateaus,” PRX Quantum 3, 010313 (2022).
  45. Yanzhu Chen, Linghua Zhu, Nicholas J. Mayhall, Edwin Barnes,  and Sophia E. Economou, “How much entanglement do quantum optimization algorithms require?” in Quantum 2.0 (Optica Publishing Group, 2022) pp. QM4A–2.
  46. Andreas J. C. Woitzik, Panagiotis Kl. Barkoutsos, Filip Wudarski, Andreas Buchleitner,  and Ivano Tavernelli, “Entanglement production and convergence properties of the variational quantum eigensolver,” Phys. Rev. A 102, 042402 (2020).
  47. Carlos Ortiz Marrero, Mária Kieferová,  and Nathan Wiebe, “Entanglement-induced barren plateaus,” PRX Quantum 2, 040316 (2021).
  48. Lorenzo Leone, Salvatore F. E. Oliviero, Lukasz Cincio,  and M. Cerezo, “On the practical usefulness of the Hardware Efficient Ansatz,” arXiv preprint arXiv:2211.01477  (2022).
  49. Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla, Yong Baek Kim,  and Henry Yuen, “Exploring entanglement and optimization within the Hamiltonian Variational Ansatz,” PRX Quantum 1, 020319 (2020).
  50. Chufan Lyu, Xusheng Xu, Man-Hong Yung,  and Abolfazl Bayat, “Symmetry enhanced variational quantum spin eigensolver,” Quantum 7, 899 (2023).
  51. Jonathan Romero, Ryan Babbush, Jarrod R. McClean, Cornelius Hempel, Peter J. Love,  and Alán Aspuru-Guzik, “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz,” Quantum Sci. Technol. 4, 014008 (2018).
  52. Rodney J. Bartlett and Monika Musiał, “Coupled-cluster theory in quantum chemistry,” Rev. Mod. Phys. 79, 291 (2007).
  53. Juan Miguel Arrazola, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado,  and Nathan Killoran, “Universal quantum circuits for quantum chemistry,” Quantum 6, 742 (2022).
  54. Zhenyu Cai, “Resource estimation for quantum variational simulations of the Hubbard model,” Phys. Rev. Appl. 14, 014059 (2020).
  55. Mårten Skogh, Oskar Leinonen, Phalgun Lolur,  and Martin Rahm, “Accelerating variational quantum eigensolver convergence using parameter transfer,” Electronic Structure 5, 035002 (2023).
  56. Manpreet Singh Jattana, Fengping Jin, Hans De Raedt,  and Kristel Michielsen, “Improved variational quantum eigensolver via quasidynamical evolution,” Phys. Rev. Appl. 19, 024047 (2023).
  57. Joonho Kim, Jaedeok Kim,  and Dario Rosa, “Universal effectiveness of high-depth circuits in variational eigenproblems,” Phys. Rev. Res. 3, 023203 (2021).
  58. Farrokh Vatan and Colin Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A 69, 032315 (2004).
  59. Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love,  and Martin Head-Gordon, “Simulated quantum computation of molecular energies,” Science 309, 1704–1707 (2005).
  60. Trygve Helgaker, Sonia Coriani, Poul Jørgensen, Kasper Kristensen, Jeppe Olsen,  and Kenneth Ruud, “Recent advances in wave function-based methods of molecular-property calculations,” Chem. Rev. 112, 543–631 (2012).
  61. Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan, Annie Y. Wei, Peter J. Love,  and Alán Aspuru-Guzik, “Exponentially more precise quantum simulation of fermions in second quantization,” New J. Phys. 18, 033032 (2016).
  62. Michael A. Nielsen, “The fermionic canonical commutation relations and the Jordan-Wigner transform,” School of Physical Sciences The University of Queensland 59 (2005).
  63. Jarrod R. McClean et al., “OpenFermion: the electronic structure package for quantum computers,” Quantum Sci. Technol. 5, 034014 (2020).
  64. Ville Bergholm et al., “PennyLane: Automatic differentiation of hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968  (2018).
  65. S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright,  and C. Monroe, “Demonstration of a small programmable quantum computer with atomic qubits,” Nature 536, 63–66 (2016).
  66. Martin Larocca, Nathan Ju, Diego García-Martín, Patrick J. Coles,  and Marco Cerezo, “Theory of overparametrization in quantum neural networks,” Nat. Comput. Sci. 3, 542–551 (2023).
  67. Jason D. Lee, Max Simchowitz, Michael I. Jordan,  and Benjamin Recht, “Gradient descent only converges to minimizers,” in Conference on learning theory (PMLR, 2016) pp. 1246–1257.
  68. Charles R. Harris et al., “Array programming with NumPy,” Nature 585, 357–362 (2020).
  69. Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright,  and Christopher Monroe, “Experimental comparison of two quantum computing architectures,” Proc. Natl. Acad. Sci. U.S.A 114, 3305–3310 (2017).
  70. Sajjad Sanaei and Naser Mohammadzadeh, ‘‘Qubit mapping of one-way quantum computation patterns onto 2d nearest-neighbor architectures,” Quantum Inf.Process. 18, 56 (2019).
  71. F. Orts, E. Filatovas, G. Ortega, J.F. SanJuan-Estrada,  and E.M. Garzón, “Improving the number of t gates and their spread in integer multipliers on quantum computing,” Phys. Rev. A 107, 042621 (2023).
  72. Stefan H. Sack, Raimel A. Medina, Alexios A. Michailidis, Richard Kueng,  and Maksym Serbyn, “Avoiding barren plateaus using classical shadows,” PRX Quantum 3, 020365 (2022).
  73. Lucas Friedrich and Jonas Maziero, “Avoiding barren plateaus with classical deep neural networks,” Phys. Rev. A 106, 042433 (2022).
  74. Antonio A. Mele, Glen B. Mbeng, Giuseppe E. Santoro, Mario Collura,  and Pietro Torta, “Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian Variational Ansatz,” Phys. Rev. A 106, L060401 (2022).
  75. Andrea Skolik, Jarrod R. McClean, Masoud Mohseni, Patrick van der Smagt,  and Martin Leib, “Layerwise learning for quantum neural networks,” Quantum Mach.Intell. 3, 1–11 (2021).
  76. Henry Eyring, ‘‘The activated complex in chemical reactions,” J. Chem. Phys. 3, 107–115 (1935).
  77. Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein,  and Daniel S. Fisher, “Boson localization and the superfluid-insulator transition,” Phys. Rev. B 40, 546 (1989).
  78. Xin-Yu Huang, Lang Yu, Xu Lu, Yin Yang, De-Sheng Li, Chun-Wang Wu, Wei Wu,  and Ping-Xing Chen, “Qubitization of Bosons,” arXiv preprint arXiv:2105.12563  (2021).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com