Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A short-time drift propagator approach to the Fokker-Planck equation (2311.00244v1)

Published 1 Nov 2023 in physics.comp-ph

Abstract: The Fokker-Planck equation is a partial differential equation that describes the evolution of a probability distribution over time. It is used to model a wide range of physical and biological phenomena, such as diffusion, chemical reactions, and population dynamics. Solving the Fokker-Planck equation is a difficult task, as it involves solving a system of coupled nonlinear partial differential equations. In general, analytical solutions are not available and numerical methods must be used. In this research, we propose a novel approach to the solution of the Fokker-Planck equation in a short time interval. The numerical solution to the equation can be obtained iteratively using a new technique based on the short-time drift propagator. This new approach is different from the traditional methods, as the state-dependent drift function has been removed from the multivariate Gaussian integral component and is instead presented as a state-shifted element. We evaluated our technique employing a fundamental Wiener process with constant drift components in both one- and two-dimensional space. The results of the numerical calculation were found to be consistent with the exact solution. The proposed approach offers a promising new direction for research in this area.

Summary

We haven't generated a summary for this paper yet.