Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the effect of curriculum learning with developmental data for grammar acquisition (2311.00128v2)

Published 31 Oct 2023 in cs.CL

Abstract: This work explores the degree to which grammar acquisition is driven by language simplicity' and the source modality (speech vs. text) of data. Using BabyBERTa as a probe, we find that grammar acquisition is largely driven by exposure to speech data, and in particular through exposure to two of the BabyLM training corpora: AO-Childes and Open Subtitles. We arrive at this finding by examining various ways of presenting input data to our model. First, we assess the impact of various sequence-level complexity based curricula. We then examine the impact of learning overblocks' -- covering spans of text that are balanced for the number of tokens in each of the source corpora (rather than number of lines). Finally, we explore curricula that vary the degree to which the model is exposed to different corpora. In all cases, we find that over-exposure to AO-Childes and Open Subtitles significantly drives performance. We verify these findings through a comparable control dataset in which exposure to these corpora, and speech more generally, is limited by design. Our findings indicate that it is not the proportion of tokens occupied by high-utility data that aids acquisition, but rather the proportion of training steps assigned to such data. We hope this encourages future research into the use of more developmentally plausible linguistic data (which tends to be more scarce) to augment general purpose pre-training regimes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.