Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully dynamic approximation schemes on planar and apex-minor-free graphs (2310.20623v1)

Published 31 Oct 2023 in cs.DS

Abstract: The classic technique of Baker [J. ACM '94] is the most fundamental approach for designing approximation schemes on planar, or more generally topologically-constrained graphs, and it has been applied in a myriad of different variants and settings throughout the last 30 years. In this work we propose a dynamic variant of Baker's technique, where instead of finding an approximate solution in a given static graph, the task is to design a data structure for maintaining an approximate solution in a fully dynamic graph, that is, a graph that is changing over time by edge deletions and edge insertions. Specifically, we address the two most basic problems -- Maximum Weight Independent Set and Minimum Weight Dominating Set -- and we prove the following: for a fully dynamic $n$-vertex planar graph $G$, one can: * maintain a $(1-\varepsilon)$-approximation of the maximum weight of an independent set in $G$ with amortized update time $f(\varepsilon)\cdot n{o(1)}$; and, * under the additional assumption that the maximum degree of the graph is bounded at all times by a constant, also maintain a $(1+\varepsilon)$-approximation of the minimum weight of a dominating set in $G$ with amortized update time $f(\varepsilon)\cdot n{o(1)}$. In both cases, $f(\varepsilon)$ is doubly-exponential in $\mathrm{poly}(1/\varepsilon)$ and the data structure can be initialized in time $f(\varepsilon)\cdot n{1+o(1)}$. All our results in fact hold in the larger generality of any graph class that excludes a fixed apex-graph as a minor.

Citations (1)

Summary

We haven't generated a summary for this paper yet.