Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective Intrinsic Reward Learning for Conversational Recommender Systems (2310.20109v1)

Published 31 Oct 2023 in cs.IR

Abstract: Conversational Recommender Systems (CRS) actively elicit user preferences to generate adaptive recommendations. Mainstream reinforcement learning-based CRS solutions heavily rely on handcrafted reward functions, which may not be aligned with user intent in CRS tasks. Therefore, the design of task-specific rewards is critical to facilitate CRS policy learning, which remains largely under-explored in the literature. In this work, we propose a novel approach to address this challenge by learning intrinsic rewards from interactions with users. Specifically, we formulate intrinsic reward learning as a multi-objective bi-level optimization problem. The inner level optimizes the CRS policy augmented by the learned intrinsic rewards, while the outer level drives the intrinsic rewards to optimize two CRS-specific objectives: maximizing the success rate and minimizing the number of turns to reach a successful recommendation in conversations. To evaluate the effectiveness of our approach, we conduct extensive experiments on three public CRS benchmarks. The results show that our algorithm significantly improves CRS performance by exploiting informative learned intrinsic rewards.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhendong Chu (15 papers)
  2. Nan Wang (147 papers)
  3. Hongning Wang (107 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.