Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Asymptotic Limit Theory and Inference for Monotone Regression (2310.20058v2)

Published 30 Oct 2023 in math.ST, stat.ME, and stat.TH

Abstract: Nonparametric regression problems with qualitative constraints such as monotonicity or convexity are ubiquitous in applications. For example, in predicting the yield of a factory in terms of the number of labor hours, the monotonicity of the conditional mean function is a natural constraint. One can estimate a monotone conditional mean function using nonparametric least squares estimation, which involves no tuning parameters. Several interesting properties of the isotonic LSE are known including its rate of convergence, adaptivity properties, and pointwise asymptotic distribution. However, we believe that the full richness of the asymptotic limit theory has not been explored in the literature which we do in this paper. Moreover, the inference problem is not fully settled. In this paper, we present some new results for monotone regression including an extension of existing results to triangular arrays, and provide asymptotically valid confidence intervals that are uniformly valid over a large class of distributions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.