Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Communication Efficiency in Federated Natural Policy Gradient via ADMM-based Gradient Updates (2310.19807v1)

Published 9 Oct 2023 in cs.LG and math.OC

Abstract: Federated reinforcement learning (FedRL) enables agents to collaboratively train a global policy without sharing their individual data. However, high communication overhead remains a critical bottleneck, particularly for natural policy gradient (NPG) methods, which are second-order. To address this issue, we propose the FedNPG-ADMM framework, which leverages the alternating direction method of multipliers (ADMM) to approximate global NPG directions efficiently. We theoretically demonstrate that using ADMM-based gradient updates reduces communication complexity from ${O}({d{2}})$ to ${O}({d})$ at each iteration, where $d$ is the number of model parameters. Furthermore, we show that achieving an $\epsilon$-error stationary convergence requires ${O}(\frac{1}{(1-\gamma){2}{\epsilon}})$ iterations for discount factor $\gamma$, demonstrating that FedNPG-ADMM maintains the same convergence rate as the standard FedNPG. Through evaluation of the proposed algorithms in MuJoCo environments, we demonstrate that FedNPG-ADMM maintains the reward performance of standard FedNPG, and that its convergence rate improves when the number of federated agents increases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Guangchen Lan (7 papers)
  2. Han Wang (420 papers)
  3. James Anderson (60 papers)
  4. Christopher Brinton (17 papers)
  5. Vaneet Aggarwal (222 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.