Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Medical Prescriptions with Conditional Transformer (2310.19727v2)

Published 30 Oct 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Access to real-world medication prescriptions is essential for medical research and healthcare quality improvement. However, access to real medication prescriptions is often limited due to the sensitive nature of the information expressed. Additionally, manually labelling these instructions for training and fine-tuning NLP models can be tedious and expensive. We introduce a novel task-specific model architecture, Label-To-Text-Transformer (\textbf{LT3}), tailored to generate synthetic medication prescriptions based on provided labels, such as a vocabulary list of medications and their attributes. LT3 is trained on a set of around 2K lines of medication prescriptions extracted from the MIMIC-III database, allowing the model to produce valuable synthetic medication prescriptions. We evaluate LT3's performance by contrasting it with a state-of-the-art Pre-trained LLM (PLM), T5, analysing the quality and diversity of generated texts. We deploy the generated synthetic data to train the SpacyNER model for the Named Entity Recognition (NER) task over the n2c2-2018 dataset. The experiments show that the model trained on synthetic data can achieve a 96-98\% F1 score at Label Recognition on Drug, Frequency, Route, Strength, and Form. LT3 codes and data will be shared at \url{https://github.com/HECTA-UoM/Label-To-Text-Transformer}

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com